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Abstract

Whether an almost-commuting pair of operators must be close to a commuting pair is a central
question in operator and matrix theory. We investigate this problem for pairs of C∗-subalgebras
A and B of Md(C), showing that each operator in B is O(d2ε)-close in operator norm to an
operator in the commutant A′ under two complementary formulations of “ε-almost commutation.”
One formulation is probabilistic, requiring that the operators of B have small commutators for
most Haar-random unitaries acting on A. This first formulation leads to two novel probabilistic
generalizations of Stampfli’s theorem, which relates an operator’s distance from the scalars
to the norm of its inner derivation. The second formulation is deterministic, requiring small
commutators between the generators of A and B; we analyze this using an approximate Schur’s
lemma formulated in terms of Weyl-Heisenberg (clock-and-shift) matrices. As an application
of our results to quantum information theory, we obtain a quantitative Tsirelson’s theorem: in
dimension d, every ε-almost quantum commuting observable model is well approximated by a
quantum tensor-product model with error O(d2ε).

1 Introduction

A long-standing research theme in matrix theory asks when pairs of matrices that almost commute
must be close to a genuinely commuting pair. Initiated by [Hal76; Ros69] for the normalized
Hilbert-Schmidt norm and the operator norm, respectively, many results have been developed for
these two norms under various structural assumptions [BH74; Cho88; FK10; FR96; Gle10; Ioa24;
Lin96; Lin24; LT70; PS79; Voi83]. (See Sec. 4.3 for more details.) Our perspective and setup are
motivated by quantum information theory: Tsirelson’s theorem [Tsi06] establishes an equivalence
between the tensor-product model and the commuting operator model in finite-dimensional quantum
systems. This naturally prompts the quantitative question: to what extent does the equivalence
persist when the operators only approximately commute?

Keywords. Almost-commuting matrices, commutator estimates, approximate Schur’s lemma, probabilistic Stampfli
theorem, Weyl-Heisenberg (clock-and-shift) matrices, finite-dimensional C∗-algebras, tensor-product factorization,
quantitative Tsirelson’s theorem.
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1.1 Contribution and structure of the paper

Let A,B ⊂ Md(C) be finite-dimensional C∗-subalgebras with self-adjoint generating families
{Aa|x}a,x and {Bb|y}b,y, respectively. Under an “ε-almost commuting” hypothesis for the generators—
formulated in two complementary senses made precise in Thms. 2.5 and 3.7—we show that each
generator Bb|y of B is O(d2ε)-close (in operator norm) to a self-adjoint operator B′

b|y lying in the

commutant A′. In finite dimensions, semi-simplicity of A implies that A ≃
⊕L

l=1B(Hl
A)⊗ 1lB, for

some Hilbert spaces Hl
A and Hl

B with 1lB acting on Hl
B as the identity. Consequently, B′

b|y ∈ A′

is equivalent to B′
b|y =

⊕
l 1

l
A ⊗B′l

b|y, so our bounds yield an explicit approximate tensor-product

factorization for the pair (A,B).
The first route, detailed in Sec. 2, is deterministic. This approach controls commutator bounds

with respect to the Weyl-Heisenberg clock-and-shift matrices, which form a canonical generating set
for Md(C). The key technical tool is an approximate Schur’s lemma (Lem. 2.1), which quantitatively
shows that an operator almost commuting with the clock-and-shift matrices must be close to a
scalar, and its consequence in bipartite systems (Lem. 2.2). Under assumptions on how efficiently the
clock-and-shift matrices can be expressed using the generators {Aa|x} of A (quantified by algebraic
complexity constants c1, c2, c3), this leads to our first approximate Tsirelson’s theorem (Thm. 2.5),
establishing the O(d2ε) estimate in the operator norm. We also discuss the scaling of the constants
c1, c2, c3 (Rem. 2.6).

Sec. 3 presents the second, probabilistic route. Here, we relax the requirement of uniform
commutator bounds. We instead demand small commutators only for most Haar-random unitaries
within two-dimensional subspaces (aka, single-qubits), and explain how this can be generalized to
arbitrary d-dimensional subspaces in Rem. 3.4. This leads to a probabilistic Stampfli’s theorem
(Thm. 3.3), relating these probabilistic commutator bounds to an operator’s distance from scalar
multiples of the identity. We further extend this to a doubly probabilistic version (Thm. 3.5) by
also randomizing the two-dimensional subspaces. While the former (Thm. 3.3) holds for possibly
infinite-dimensional Hilbert spaces, the doubly probabilistic variant (Thm. 3.5) holds only in finite
dimensions. The doubly probabilistic Stampfli’s theorem allows us to derive our second main
approximate Tsirelson’s theorem (Thm. 3.7), again achieving an O(d2ε) error estimate.

Finally, Sec. 4 explores the applications and context of our work. We detail the construction
of an approximating tensor-product quantum strategy based on our main theorems (Prop. 4.1,
see the following subsection). Furthermore, we explore the interplay between our results, the
Navascués-Pironio-Aćın (NPA) hierarchy [NPA08; PNA10]—a convergent semidefinite programming
(SDP) hierarchy characterizing commuting quantum correlations—and computational complexity
(Rem. 4.2). We situate our results within the literature on approximating almost commuting
matrices (Sec. 4.3) and conclude with a broader discussion (Sec. 4.4).

1.2 Motivation: application to quantum information theory

Quantum information theory studies how information is represented and processed in quantum
systems. In the finite-dimensional setting relevant here, one works with states (density matrices) and
observables (self-adjoint operators/POVMs) on Hilbert spaces and asks how structural assumptions—
such as subsystem independence—constrain observable correlations.

Quantum information theory offers two different axioms for composing independent subsystems.
The standard composition axiom [NC10] postulates that the Hilbert space HT describing a joint
system T = {A,B} is the tensor product HT := HA ⊗HB. Each local subsystem’s observables act
on its respective tensor factors and are identity over the other subsystem: e.g., unitaries UA, VB
local to subsystems A,B act on the global system T as UA ⊗ 1B and 1A ⊗ VB, respectively. An
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alternative axiomatization, common in algebraic quantum field theory [Lan17], does not introduce
the tensor product, but models independence by postulating that the observables of different parties
act on the same Hilbert space and commute. In other words, UA, VB act on the same global Hilbert
space HT with only [UA, VB] = 0.

Whether these two axiomatizations result in the same physical predictions was a long-standing
problem. In particular, Tsirelson’s problem asks whether the tensor-product model and the commut-
ing operator model yield the same set of bipartite quantum correlations—a concept that has been
central to both the foundational understanding and practical applications of quantum theory since
Bell’s groundbreaking work [Bel64]. Tsirelson demonstrated the equivalence of these two models in
finite-dimensional settings [Doh+08; SW08; Tsi06], formally:

Theorem (Tsirelson’s theorem). Let {Aa|x}, {Bb|y} ⊂ B(H) be two sets of positive operator-valued
measures (POVMs) on a finite-dimensional Hilbert space H such that [Aa|x, Bb|y] = 0 for all a, b, x, y.

Then there exists a decomposition of H ≃
⊕

l(Hl
A ⊗Hl

B), such that operators Aa|x and Bb|y take the
form

Aa|x =
⊕
l

(Ala|x ⊗ 1
l
B) and Bb|y =

⊕
l

(1lA ⊗Bl
b|y),

where Ala|x ∈ B(Hl
A) and B

l
b|y ∈ B(Hl

B). Consequently, any commuting-operator correlations

p(ab|xy) = Tr
(
ρ ·Aa|x ·Bb|y

)
obtained from a state ρ on H can be reproduced as tensor-product correlations using POVMs
Ãa|x ∈ B(

⊕
lHl

A) and B̃b|y ∈ B(
⊕

lHl
B) on a state ρ̃ over (

⊕
lHl

A)⊗ (
⊕

lHl
B), i.e.,

p(ab|xy) = Tr
(
ρ̃ · (Ãa|x ⊗ B̃b|y)

)
.

The statement extends inductively to multipartite cases.

Tsirelson conjectured that the above theorem can be generalized to infinite dimensions. However,
this was recently shown to be false by the seminal work [Ji+21]: the commuting operator model
can produce correlations unattainable by any tensor-product quantum strategy. This result has far-
reaching implications including a disproof of Connes’ embedding conjecture [Con76] and Kirchberg’s
conjecture [Kir93]; see [Oza13a] for a nice survey.

By contrast, in finite dimensions, our results lead to a quantitative robustness version of
Tsirelson’s theorem: if a d-dimensional bipartite strategy is ε-almost commuting in the sense of
Thms. 2.5 and 3.7, then its correlations are approximated by those of a genuine tensor-product
strategy with error O(d2ε) (Prop. 4.1). This is a quantitative counterpart to Ozawa’s asymptotic
result [Oza13b], further demonstrating that, in finite dimensions, the tensor-product model remains a
sound effective description when subsystem independence holds only approximately. The multipartite
extension follows by induction, as in the original Tsirelson’s theorem.

2 Weyl-Heisenberg (clock-and-shift) formulation

In this section, we present our first main result, a deterministic version of Tsirelson’s theorem in
Thm. 2.5. Recall the key ideas for proving Tsirelson’s theorem (see, e.g. [Doh+08, App. A]): any
finite-dimensional C∗-algebra A generated by Alice’s observables Aa|x decomposes as a direct sum
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of simple blocks A ≃
⊕

lB(Hl
A)⊗ 1lB, and by Schur’s lemma, Bob’s commuting algebra B must lie

in
⊕

l 1
l
A ⊗B(Hl

B).
Our approximate analogue replaces “commutes” by “almost commutes”. In particular, to

formulate our results, we pick Sylvester’s clock Σ3 and shift Σ1 unitaries as generators: almost
commuting with this pair already controls an operator in every direction.

With these generators we prove an approximate Schur’s lemma (Lem. 2.1) and its bipartite
version (Lem. 2.2). Next, we show an approximate Tsirelson’s theorem for simple algebras (Lem. 2.4),
and then by the same block-decomposition argument, a general approximate Tsirelson’s theorem
(Thm. 2.5). We finish with a discussion of scaling (Rem. 2.6).

2.1 Clock-and-shift matrices

Recall Sylvester’s clock-and-shift matrices [App05], which generalize the Pauli matrices to a d-
dimensional Hilbert space H ≃ Cd. Also known as the Weyl-Heisenberg matrices, they are
fundamental in finite-dimensional quantum mechanics due to their connection to Weyl’s formulation
of the canonical commutation relations. These matrices serve as analogs of position and momentum
operators in finite-dimensional quantum systems.

Let ω = e2πi/d be the dth root of unity. Using Dirac’s notation, denote by {|i⟩ | i = 0, . . . , d− 1}
the standard basis of H, and |i+ j⟩ is understood up to mod d. Then the shift matrix Σ1 ∈ B(H)
is defined by Σ1 : |i⟩ 7→ |i+ 1⟩ and the clock matrix is defined by Σ3 : |i⟩ 7→ ωi |i⟩. More explicitly:

Σ1 =


0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 , Σ3 =


1 0 · · · 0
0 ω · · · 0
...

...
. . .

...
0 0 · · · ωd−1

 . (1)

The notation comes from the fact that the shift matrix Σ3 (resp. clock matrix Σ1) is a generalization
of the Pauli Z-matrix σ3 (resp. X-matrix σ1) when d = 2. The clock and shift Σ3,Σ1 satisfy a
generalized algebraic relation of the Pauli matrices in the sense that

Σd1 = Σd3 = 1,

Σ3Σ1 = ωΣ1Σ3.
(2)

Also note that both Σ1,Σ3 are unitary and traceless, but no longer Hermitian when d > 2. Lastly,
they give rise to an orthogonal basis of B(H) (w.r.t Hilbert-Schmidt inner product) composed of
unitary matrices

{σk,l := Σk1Σ
l
3 =

d−1∑
j=0

ωjl|j + k⟩⟨j|}0≤k,l≤d−1, (3)

where |j + k⟩⟨j| := (|j + k⟩)∗ |j⟩.

2.2 Approximate Schur’s Lemma and its bipartite version

Elementary linear algebraic arguments lead to an approximate version of Schur’s Lemma for finite-
dimensional Hilbert spaces. Write ∥·∥op for the operator (spectral) norm and ∥·∥max for the max
norm, i.e., ∥A∥max = maxi,j |Aij |.
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Lemma 2.1 (Approximate Schur’s Lemma). Let H be a d-dimensional Hilbert space, d < ∞.
Consider a fixed matrix C ∈ B(H) ≃Md(C) and suppose there exists an ε > 0 such that, for both
i = 1, 3,

∥[C,Σi]∥op ≤ ε. (4)

Then there exists c ∈ C such that

∥C − c1∥op ≤ (d− 1)ε. (5)

Proof. Note that for any matrices X,Y, Z we have

∥[XY,Z]∥op = ∥X[Y,Z] + [X,Z]Y ∥op ≤ ∥X∥op∥[Y, Z]∥op + ∥[X,Z]∥op∥Y ∥op.

Then, by induction and the fact that ∥Σi∥op = 1, we have

∥[C,Σki ]∥op ≤ kε.

Next, note that CΣ1 is the matrix where each column of C is cyclically shifted leftward, and Σ1C
is the matrix where each row of C is cyclically shifted downward. That is, for all i, the (i, i−1)-entry
of CΣ1 is Cii, while the (i, i− 1)-entry of (Σ1C) is Ci−1,i−1. Then the assumption imposes that

|Ci,i − Ci−1,i−1| = |(CΣ1 − Σ1C)i,i−1| ≤ ∥CΣ1 − Σ1C∥max ≤ ∥[C,Σ1]∥op ≤ ε,

Consequently,

|Cii −
1

d
Tr(C)| = 1

d
|
∑
j

(Cii − Cjj)| ≤
1

d
(0 + ε+ · · ·+ (d− 1)ε) =

d− 1

2
ε

by repeated uses of the triangle inequality.
Moreover, observe that diag(C) = 1/d

∑d−1
k=0Σ

k
3CΣ

−k
3 , since

(
1

d

d−1∑
k=0

Σk3CΣ
−k
3 )ij =

1

d

d−1∑
k=0

ωk(i−j)︸ ︷︷ ︸
dδi,j

Cij = δi,jCij .

It follows that

∥C − diag(C)∥op =
1

d
∥
d−1∑
k=0

(C − Σk3CΣ
−k
3 )∥op ≤ 1

d

d−1∑
k=0

∥[Σk3, C]Σ−k
3 ∥op

≤ 1

d

d−1∑
k=0

∥[Σk3, C]∥op∥Σ−k
3 ∥op ≤ 1

d

d−1∑
k=0

kε · 1k = d− 1

2
ε.

Finally, let c = 1/dTr(C), we compute

∥C − c1∥op ≤ ∥C − diag(C)∥op + ∥diag(C)− 1

d
Tr(C)1∥op

≤ d− 1

2
ε+max

i
|Cii −

1

d
Tr(C)| ≤ d− 1

2
ε+

d− 1

2
ε = (d− 1)ε.
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Via manipulation of the Kronecker tensor product formula, we quickly obtain a bipartite version
of approximate Schur’s Lemma.

Lemma 2.2. Consider two Hilbert spaces H1 with dimension d1 and H2 with dimension d2. Suppose
for the matrix C ∈ B(H1 ⊗H2), there exists some ε > 0 such that

∥[C,11 ⊗ Σ1]∥op, ∥[C,11 ⊗ Σ3]∥op ≤ ε. (6)

Then the matrix C ′ = 1/d2TrH2(C) ∈ B(H1), where TrH2 denotes the partial trace B(H1 ⊗H2) →
B(H1), satisfies

∥C − C ′ ⊗ 12∥op ≤ d1d
2
2ε. (7)

In addition, if C is positive semidefinite then so is C ′.

Proof. Note that

C =

C(11) · · · C(1d1)
...

. . .
...

C(d11) · · · C(d1d1)

 ,

where each C(ij) is some d2 × d2 matrix in B(H2). Similarly, we have that

11 ⊗ Σi =

Σi
. . .

Σi


are block matrices with only Σi on the diagonal. Since the operator norm of a matrix upper-bounds
the operator norm of its blocks, the condition ∥[C,11 ⊗ Σi]∥op ≤ ε implies that, for all k, l,

∥[C(kl),Σ1]∥op, ∥[C(kl),Σ3]∥op ≤ ε.

Then, applying the approximate version of Schur’s Lemma 2.1, for each k, l we check ckl :=
1/d2Tr

(
C(kl)

)
satisfies

∥C(kl) − ckl12∥max ≤ ∥C(kl) − ckl12∥op ≤ (d2 − 1)ε ≤ d2ε.

Defining C ′ = (ckl) ∈ B(H1), it follows that

C ′ ⊗ 12 =

 c1112 · · · c1d112
...

. . .
...

cd1112 · · · cd1d112

 .

Hence,

∥C − C ′ ⊗ 12∥op ≤ d1d2∥C − C ′ ⊗ 12∥max ≤ d1d2max
kl

(∥C(kl) − ckl12∥max) ≤ d1d
2
2ε.

(Note that the above operator norm upper bound of C −C ′ ⊗ 12 via its block is the tightest general
bound, e.g., consider the matrix whose entries are all 1 and take each entry as a block.)
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Lastly, observe that C ′ is in fact the normalized partial trace of C, since

TrH2(C) =

Tr
(
C(11)

)
· · · Tr

(
C(1d1)

)
...

. . .
...

Tr
(
C(d11)

)
· · · Tr

(
C(d1d1)

)
 = d2

 c11 · · · c1d1
...

. . .
...

cd11 · · · cd1d1

 = d2C
′.

This implies that if C is positive semidefinite, then so is C ′, due to complete positivity of the partial
trace [Bla06, Ch. II.6.10]

2.3 Approximate Tsirelson’s theorem from clock-and-shift matrices

Before presenting the approximate version of Tsirelson’s theorem, we recall the Artin-Wedderburn
decomposition of a finite-dimensional C∗-algebra [Bla06, II.1.6.4, II.8.3.2(iv), and III.1.5.3].

Lemma 2.3. Every finite-dimensional C∗-algebra A is semi-simple. That is, there exists an
Artin-Wedderburn decomposition

A =
⊕
k

Ak,

such that each Ak is simple, i.e. contains no non-trivial closed two-sided ideals.
Furthermore, if A ⊂ B(H) is simple, then there exists a bipartite partition of H such that

H = H1 ⊗H2 and A ≃ B(H1)⊗ 12.

This structural result gives a road map: first prove the simple version of approximate Tsirelson’s
theorem, then the general case follows. For the following approximate Tsirelson’s theorem, let us
impose extra assumptions on the “generating power of the strategy”, represented by the constants
c1, c2, c3 below.

Lemma 2.4 (Approximate Tsirelson’s theorem, simple case). Let H be a d-dimensional Hilbert
space H. Let A ⊂ B(H) be generated by contractive self-adjoint operators {Aa|x} and B ⊂ B(H) be
generated by contractive self-adjoint operators {Bb|y}. Assume that there exists an ε > 0, such that
for all a, b, x, y,

∥[Aa|x, Bb|y]∥op ≤ ε. (8)

Suppose that A is simple, i.e. there exists a bipartition H = HA ⊗HB such that A ≃ B(HA)⊗ 1B
and Aa|x = A′

a|x ⊗ 1B for all a, x.

Suppose that the clock-and-shift matrices Σ3,Σ1 ∈ B(HA) are generated by some polynomials
P3, P1 in {A′

a|x}. Assume, moreover, that the maximal absolute value of their coefficients is bounded
by c1, the maximal degree is bounded by c2, and the maximal number of terms is bounded by c3.
Then there exist operators B′

b|y ∈ B(HB) such that, for all b, y,

∥Bb|y − 1A ⊗B′
b|y∥op ≤ c1c2c3d

2ε. (9)

In addition, if Bb|y is positive then so is B′
b|y

Proof. Note that for any matrices X,Y, Z we have

∥[XY,Z]∥op = ∥X[Y,Z] + [X,Z]Y ∥op ≤ ∥X∥op∥[Y, Z]∥op + ∥[X,Z]∥op∥Y ∥op. (10)
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Then for any monomial α in {Aa|x} of degree k, one can use the fact that ∥Aa|x∥op ≤ 1 to inductively
compute

∥[α,Bb|y]∥op ≤ kmax
a,x

∥Aa|x∥op∥[Aa|x, Bb|y]∥op ≤ kε.

Then, for polynomials Σi = Pi({Aa|x}), we have

∥[Σi, Bb|y]∥op ≤ c1c2c3max
a,x

(∥[Aa|x, Bb|y]∥op) ≤ c1c2c3ε,

and we are done by Lem. 2.2.

Remark that the “contraction” requirement is not necessary and one can reproduce the same
result by replacing ε by ε/∥Aa|x∥op. The simple version can be readily generalized to the general
finite-dimensional case with Lem. 2.3.

Theorem 2.5 (Approximate Tsirelson’s theorem, general case). Let A be generated by contractive
self-adjoint operators {Aa|x} ⊂ B(H) and B be generated by contractive self-adjoint operators
{Bb|y} ⊂ B(H) for some d-dimensional Hilbert space H. Assume that there exists an ε > 0, such
that for all a, b, x, y,

∥[Aa|x, Bb|y]∥op ≤ ε. (11)

Suppose also that A admits the Artin-Wedderburn decomposition

A =

L⊕
l=1

Al ≃
L⊕
l=1

B(Hl
A)⊗ 1lB and Aa|x =

L⊕
l=1

Ala|x ⊗ 1
l
B,

with the corresponding orthogonal projectors Πl to the direct summands. Denote by Σl3,Σ
l
1 ∈ B(Hl

A)
the clock-and-shift operators in Hl

A.
Furthermore, suppose that there exist polynomials Pl, Q

l
1, Q

l
3, for all l = 1, . . . , L such that

Πl = Pl({Aa|x}), Σl1 = Ql1({ΠlAa|x Πl}), and Σl3 = Ql3({ΠlAa|x Πl}).

Assume that their absolute values of the maximal coefficients are bounded by the constant c1, the
degrees are bounded by the constant c2, and the maximal number of terms is bounded by the constant
c3. Then there exist operators B′

b|y ∈
⊕L

l=1 1
l
A ⊗B(Hl

B) = A′ such that, for all b, y,

∥Bb|y −B′
b|y∥op ≤ 2c1c2c3 (c1c2c3 + 1) d2ε. (12)

In addition, if Bb|y is positive then so is B′
b|y.

Proof. First, we wish to apply Lem. 2.4 to each ΠlAa|xΠl ∈ Al and the corresponding ΠlBb|yΠl. To
this end, note that, by straightforward calculations, one has

∥[Bb|y,Πl]∥op ≤ c1c2c3∥[Aa|x, Bb|y]∥op ≤ c1c2c3ε

and

[ΠlAa|xΠl,ΠlBb|yΠl] = Πl[Πl, B]Aa|xΠl +Πl[Aa|x, Bb|y]Πl +ΠlAa|x[Π, Bb|y]Πl.
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It follows from ∥Aa|x∥op, ∥Πl∥op ≤ 1 and the Cauchy-Schwarz inequality that

∥[ΠlAa|xΠl,ΠlBb|yΠl]∥op ≤ ∥[Πl, B]∥op + ∥[Aa|x, Bb|y]∥op + ∥[Π, Bb|y]∥op ≤ (2c1c2c3 + 1)ε.

Therefore, by Lem. 2.4, there exists for each l some positive semidefinite Bl
b|y ∈ B(Hl

B) such that

∥ΠlBb|yΠl − 1lA ⊗Bl
b|y∥op ≤ c1c2c3(2c1c2c3 + 1)d2l ε,

where dl = dim(Hl
A ⊗Hl

B).
Now, Bb|y does not admit the same direct decomposition as A due to [Πl, Bb|y] ̸= 0. Thus, we

need to also estimate

∥Bb|y −
∑
l

ΠlBb|yΠl∥op ≤ ∥
∑
l,l′

ΠlBb|yΠl′ −
∑
l

ΠlBb|yΠl∥op

≤ ∥
∑
l ̸=l′

ΠlBb|yΠl′∥op

≤
∑
l ̸=l′

∥ΠlΠl′Bb|y +Πl[Bb|y,Πl′ ]∥op

≤
∑
l ̸=l′

∥Πl∥op∥[Bb|y,Πl′ ]∥op ≤ L(L− 1)c1c2c3ε,

where the completeness and orthogonality of Πl are used.
Finally, one sees that

∥Bb|y −
L⊕
l=1

1lA ⊗Bl
b|y∥op ≤ ∥Bb|y −

L∑
l=1

ΠlBb|yΠl∥op + ∥
L∑
l=1

ΠlBb|yΠl −
L⊕
l=1

1lA ⊗Bl
b|y∥op

≤ L(L− 1)c1c2c3ε+

L∑
l=1

c1c2c3(2c1c2c3 + 1)d2l ε ≤ c1c2c3
(
L(L− 1) + (2c1c2c3 + 1)d2

)
ε.

Note L ≤ d, so we are done by defining B′
b|y :=

⊕L
l=1 1

l
A ⊗Bl

b|y.

While all results in this section are formulated in terms of the Weyl-Heisenberg (clock-and-shift)
matrices Σ1,Σ3, we observe that any full generating set (e.g., the matrix units Ekl = |k⟩⟨l|) would
still work. We finish the section with a remark on the factors c1, c2, c3.

Remark 2.6. Note that the bound Eq. (12) has an O(d2ε) scaling for fixed c1, c2, c3. We finish the
section with some comments on these factors c1, c2, c3, which are generally example-specific.

1. The generating polynomial degree c2 is related to the length of algebras with known dependence
on the dimension d. The conjectured bound is O(d) according to [Paz84], while the best proven
bound is O(d log(d)) due to [Shi19]. The bound is O(log d) when a “generic” assumption is
met as detailed in [KŠ16].

2. The number of terms in generating polynomials c3 is related to c2. In the worst case scenario,
c3 is the number of possible monomials of {Aa|x} up to degree c2, which grows exponentially

in c2 (i.e. c3 ≤
∑c2

k=0(|{Aa|x}|)k).

3. The coefficient magnitude c1 can be challenging to bound generally. While specific algebraic
structures might lead to large c1, work by [Pas19] offers a systematic approach. It involves
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constructing a matrix P from the POVM generators, whose properties (e.g., its singular values
or entry magnitudes) can serve as an indicator for the likely behavior of c1.

3 Haar-random single-qubit unitary formulation

In this section, we present our second main result, a probabilistic version of Tsirelson’s theorem in
Thm. 3.7. Since this will have a matrix generator independent formulation, we start by looking for
a uniform version of Schur’s lemma. Such a result is given by Stampfli [Sta70, Thm. 4 & Cor. 1].

Theorem 3.1 (Stampfli’s theorem). Let C ∈ B(H) for some Hilbert space H of possibly infinite
dimensions. Then

sup
B∈B(H): ∥B∥op=1

∥[C,B]∥op = inf
c∈C

2∥C − c1∥op. (13)

Moreover, if C is a normal operator, then

inf
c∈C

∥C − c1∥op = R(σ(C)), (14)

where R(σ(C)) is the radius of the minimum enclosing disk of the compact set σ(C) ⊂ C. Note that
R(σ(C)) is not the same as the spectral radius of C.

In particular, if ∥[C,B]∥op ≤ ε for all B of norm 1, then C is ε/2-close to some scalar operator
c1 in operator norm. Note that ∥[C,U ]∥op ≤ ε for all unitaries U is equivalent to the assumption
that ∥[C,B]∥op ≤ ε for all B of norm 1 due to the Russo-Dye theorem [Bla06, Cor. II.3.2.15].

While mathematically pleasing, Stampfli’s premise is too strong in physical scenarios, since
testing commutators with all operators B satisfying ∥B∥op = 1 would require probing an uncountable
family of observables. Therefore, in this section, we revisit Stampfli’s theorem through a physically
motivated probabilistic approach—the Haar-random single-qubit unitary formulation. Here, “single-
qubit” in physics jargon refers to C2-subspaces (more generally, “qudits” are Cd for any d ≥ 2).

We first show that the demanding requirement “C almost commutes with every unitary” can
be relaxed to “C almost commutes with most single-qubit unitaries taken at random”, yielding
our probabilistic Stampfli theorem (Thm. 3.3). Because the Haar measure is unavailable in infinite
dimensions, the randomization is implemented by sampling Haar-random unitaries inside every two-
dimensional subspace. However, checking every two-dimensional subspace in an infinite-dimensional
space is still unrealistically demanding.

Hence, we then push the idea further: by also randomizing these two-dimensional subspaces, we
obtain a doubly probabilistic Stampfli’s theorem (Thm. 3.5) that is better aligned with realistic
experiments. Though, due to the technicality of randomization over subspaces, our result necessarily
restricts to finite dimensions. Finally, we develop another approximate Tsirelson’s theorem (Thm. 3.7)
based on this doubly probabilistic Haar-random single-qubit unitary formulation.

We observe that the above results can also be formulated with d-dimensional subspaces for
arbitrary d (Rem. 3.4).

3.1 Probabilistic Stampfli’s theorem

The first probabilistic relaxation of commutation can be written as follows: for Haar-random
unitaries U , there are ε, δ > 0, such that the probability of having a small commutator (≤ ε) with
U is high (≥ 1− δ).

10



For notational convenience, from now on denote by Gr(2,H) the Grassmannian of H, this is a
manifold whose elements are exactly two-dimensional subspaces K ⊂ H. Let µK denote the Haar
probability measure on the unitary group U(K) in B(K).

We first consider self-adjoint operators, and the general case follows from the standard decompo-
sition into real plus imaginary parts.

Lemma 3.2. Let H be a Hilbert space of possibly infinite dimension, and let C ∈ B(H) be a
self-adjoint operator. Given ε > 0 and δ ∈ [0, 1], suppose that

Pr
U∼µK

{∥[PKCPK, U ]∥op ≤ ε} ≥ 1− δ (15)

for every subspace K ∈ Gr(2,H) with projector PK. Then

inf
c∈C

∥C − c1H∥op ≤ min

(√
2

2

(√
1− δ ε+ 2

√
δ∥C∥op

)
,

⌈
1

1− δ

⌉
ε

2

)
. (16)

Note that the bound ⌈ 1
1−δ ⌉

ε
2 generally behaves better when δ is small (e.g., it reduces to ε

when δ ≤ 1/2), while the bound
√
2
2

(√
1− δ ε+ 2

√
δ∥C∥op

)
is more stable and does not blow up

as δ → 1.

Proof. Let us first derive the bound
√
2
2

(√
1− δ ε+ 2

√
δ∥C∥op

)
. The central object to bound

is E∥[PKCPK, U ]∥2op—while the upper bound is straightforward, the lower bound requires more
work. The main idea is to identify K = Span {|ψ1⟩ , |ψ2⟩}. Up to infinite-dimensional subtlety,
the vector |ψ1⟩ (resp. |ψ2⟩) is chosen to approximate the “eigenvector” of C associated with the
minimal (resp. maximal) “eigenvalue”. On this K, one can then lower bound ∥[PKCPK, U ]∥op by
2 infc∈C∥C − c1H∥2op using the radius of spectrum of C, and then apply Stampfli’s Theorem 3.1.

We begin with the spectral theorem for the bounded self-adjoint operator C [Bla06, Ch. I.6.1]:
there exists a unique projective-valued measure E such that

C =

∫
σ(C)

λ dE(λ).

Note that the spectrum σ(C) satisfies

σ(C) ⊂

[
inf

∥ψ∥2=1
⟨ψ|C|ψ⟩, sup

∥ψ∥2=1
⟨ψ|C|ψ⟩

]
:= [λmin, λmax].

We can check in this case that R(σ(C)) = 1
2(λmax − λmin).

If λmin = λmax, then C is automatically a scalar operator and the conclusion is trivial. Otherwise,
given an η > 0, we may consider intervals I1, I2 ⊂ σ(C) such that

I1 = [λmin, λmin + η] ∩ σ(C), I2 = [λmax − η, λmax] ∩ σ(C)

with the corresponding spectral projections E(I1), E(I2). Fix two unit vectors, |ψ1⟩ ∈ E(I1)H and
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|ψ2⟩ ∈ E(I2)H. Direct calculation shows

⟨ψ1|(C − λmin1H)|ψ1⟩ =
∫
σ(C)

(λ− λmin) dµ1(λ) =

∫
I1

(λ− λmin) dµ(λ) ≤ η2,

⟨ψ2|(λmax1H − C)|ψ2⟩ =
∫
σ(C)

(λmax − λ) dµ2(λ) =

∫
I2

(λmax − λ) dµ(λ) ≤ η2,

where the measures µi(X) = ⟨ψi|E(X)|ψi⟩ are supported on Ii for i = 1, 2.
Subsequently, we identify K = Span {|ψ1⟩ , |ψ2⟩} ∈ Gr(2,H) with projector PK. Clearly CK =

PKCPK ∈ B(K) is a two-dimensional self-adjoint operator, so we denote its two eigenvalues by
µmin, µmax, and R(σ(CK)) = 1/2(µmax − µmin). Then, the above two inequalities show that

µmin ≤ ⟨ψ1|CK|ψ1⟩ = ⟨ψ1|C|ψ1⟩ ≤ λmin + η2

µmax ≥ ⟨ψ2|CK|ψ2⟩ = ⟨ψ2|C|ψ2⟩ ≥ λmax − η2.

By Stampfli’s Theorem 3.1,

inf
c∈C

∥C − c1H∥op = R(σ(C)) =
1

2
(λmax − λmin) ≤

1

2
(µmax − µmin) + η2 = inf

c∈C
∥CK − c1K∥op + η2.

To upper bound infc∈C∥CK − c1K∥op, we work with the eigenbasis {|µmin⟩ , |µmax⟩} of CK
associated with {µmin, µmax}. In this basis, every unitary U ∈ B(K) satisfies ∥U |µmin⟩∥22 = |U11|2 +
|U21|2 = 1. Moreover, if U is also Haar-random, then the two random variables |U11|2 and |U21|2 are
identically distributed. By symmetry it follows that the expectation values E|U11|2 = E|U21|2 = 1

2 .
Then, one checks that

E∥[CK, U ]∥2op ≥ E∥(CKU − UCK) |µmin⟩∥22
= E∥CKU |µmin⟩ − Uµmin |µmin⟩∥22
= E∥(CK − µmin1K)U |µmin⟩∥22
= E

(
|U11|2(µmin − µmin)

2 + |U21|2(µmax − µmin)
2
)

= 2
1

4
(µmax − µmin)

2

= 2R(σ(CK))
2 = 2 inf

c∈C
∥CK − c1K∥2op ≥ 2 inf

c∈C
∥C − c1H∥2op − η2.

Since η > 0 is arbitrary, it follows that

inf
c∈C

∥C − c1H∥op ≤ inf
c∈C

∥CK − c1K∥op = R(σ(CK)),

and 2 inf
c∈C

∥C − c1H∥2op ≤ E∥[CK, U ]∥2op,
(17)

using the previous inequality, which will also be used to derive the other upper bound.
On the other hand, Eq. (15) is equivalent to PrU∼µK{∥[C,U ]∥2op ≤ ε2} ≥ 1− δ, which implies
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that

E∥[CK, U ]∥2op = Pr
U∼µK

{∥[CK, U ]∥2op ≤ ε2} · E(∥[CK, U ]∥2op | ∥[CK, U ]∥2op ≤ ε2)

+ Pr
U∼µK

{∥[CK, U ]∥2op > ε2} · E(∥[CK, U ]∥2op | ∥[CK, U ]∥2op > ε2)

≤ (1− δ)ε2 + δ · ∥[CK, U ]∥2op ≤ (1− δ)ε2 + δ · 4∥C∥2op.

The first inequality is justified due to reducing the weight of the smaller conditional expectation
(≤ ε2) while increasing the weight of the larger one (≥ ε2) can only enlarge the total, and the second
one is a basic calculation. It follows from the lower bound Eq. (17) that

inf
c∈C

∥C − c1H∥op ≤ 1√
2
E∥[CK, U ]∥op ≤

√
2

2

(√
1− δ ε+ 2

√
δ∥C∥op

)
.

We now derive the upper bound ⌈ 1
1−δ ⌉

ε
2 with a Steinhaus-Weil-like argument. Let AK = {U ∈

U(K) | ∥[PKCPK, U ]∥op ≤ ε}, then Eq. (15) implies that µK(A) ≥ 1 − δ. Also, A−1
K = A∗

K = AK,
since for any U ∈ AK one has that

∥[PKCPK, U
−1]∥op = ∥U [PKCPK, U

∗]U∥op = ∥[PKCPK, U ]∥op.

Let l = ⌈ 1
1−δ ⌉, we claim that AlK = U(K). Indeed, since U(K) is compact and connected,

inductive application of Kemperman’s theorem [Kem64, Thm. 1.1] implies that

µK(A
l
K) ≥ min(1, l · µK(AK)) ≥ ⌈ 1

1− δ
⌉(1− δ) ≥ 1 = µK(U(K)),

consequently AlK = U(K).

Therefore, every V ∈ U(K) is of the form V =
∏l
i=1 Ui for some Ui ∈ AK. By the definition of

AK and an inductive application of Eq. (10), we have

∥[CK, V ]∥op = ∥[CK,

l∏
i=1

Ui]∥op ≤ lε = ⌈ 1

1− δ
⌉ε. (18)

But then, by the original Stampfli’s Theorem 3.1 and Eq. (17), we conclude

inf
c∈C

∥C − c1H∥op ≤ inf
c∈C

∥CK − c1K∥op =
1

2
sup

V ∈U(K)
∥[PKCPK, V ]∥op ≤ ⌈ 1

1− δ
⌉ε
2
.

Theorem 3.3 (Probabilistic Stampfli’s theorem). Let H be a Hilbert space of possibly infinite
dimension and let C ∈ B(H). Given ε > 0 and δ ∈ [0, 1], suppose that

Pr
U∼µK

{∥[PKCPK, U ]∥op ≤ ε} ≥ 1− δ (19)

for every subspace K ∈ Gr(2,H) with projector PK. Then

inf
c∈C

∥C − c1H∥op ≤ min

(√
2
(√

1− δ ε+ 2
√
δ∥C∥op

)
, ⌈ 1

1− δ
⌉ε
2

)
. (20)
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Again, the bound ⌈ 1
1−δ ⌉

ε
2 behaves generally better in the high confidence regime (δ → 0) while

the bound
√
2
(√

1− δ ε+ 2
√
δ∥C∥op

)
is more stable in the low confidence regime (δ → 1).

Proof. To derive the first bound
√
2
(√

1− δ ε+ 2
√
δ∥C∥op

)
, let

H =
1

2
(C + C∗), K =

1

2i
(C − C∗)

be the unique self-adjoint operators such that C = H + iK. For any K ∈ Gr(2,H) with projection
PK, write CK = PKCPK, HK = PKHPK, and KK = PKKPK. Clearly both HK and KK are still
self-adjoint. Pick x, y as minimizers such that

∥HK − x1K∥op = inf
c∈C

∥HK − c1K∥op,

∥KK − y1K∥op = inf
c∈C

∥KK − c1K∥op.

(One can check that x, y are actually the average of the largest and smallest eigenvalues of HK,KK.)
Note that both ∥HK∥op, ∥KK∥op ≤ ∥CK∥op ≤ ∥C∥op by the triangle inequality.

Next, for every unitary U ∈ B(K) direct calculation shows that

∥[C∗
K, U ]∥op = ∥U [CK, U

∗]U∥op = ∥[CK, U ]∥op.

Then

∥[HK, U ]∥op ≤ 1

2
(∥[CK, U ]∥op + ∥[C∗

K, U ]∥op) = ∥[CK, U ]∥op

and likewise for ∥[KK, U ]∥op ≤ ∥[CK, U ]∥op. Therefore, for each Haar-random U ∈ B(K) such that
∥[CK, U ]∥op ≤ ε, the same commutator bounds apply to both HK,KK, i.e.

Pr
U∼µK

{∥[HK, U ]∥op ≤ ε} = Pr
U∼µK

{∥[KK, U ]∥op ≤ ε} ≥ 1− δ.

It follows from Lem. 3.2 that both

∥H − x1K∥op, ∥K − y1K∥op ≤
√
2

2

(√
1− δ ε+ 2

√
δ∥C∥op

)
,

which implies

inf
c∈C

∥C − c1∥op ≤ ∥(H + iK)− (x+ iy)1∥op

≤ ∥H − x1∥op + ∥i(K − y1)∥op ≤
√
2
(√

1− δ ε+ 2
√
δ∥C∥op

)
.

Finally, the bound ⌈ 1
1−δ ⌉

ε
2 directly follows from Lem. 3.2 since the proof does not rely on the

self-adjointness.

Observe that when the commutator is smaller than ε with high confidence (δ < 1/2), we recover
the original Stampfli’s Theorem 3.1 up to a factor of 2 (ε instead of ε/2), which shows up to
compensate for the fact that we need to consider A2

K (from the proof of Lem. 3.2).
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Remark 3.4. One can generalize the setting of Thm. 3.3 to Haar-random unitaries U ∈ B(K)
when 2 ≤ dim(K) <∞, at the cost of having a slightly worse constant factor:

inf
c∈C

∥C − c1H∥op ≤ min

(
2
√
2
(√

1− δ ε+ 2
√
δ∥C∥op

)
, ⌈ 1

1− δ
⌉ε
2

)
. (21)

The second bound ⌈ 1
1−δ ⌉

ε
2 can be shown the same way as that of Lem. 3.2 as the argument only

relies on the compactness and connectedness of finite-dimensional unitary groups. We now give a
sketch of the proof for the first bound.

For simplicity assume K = H and C = C∗ ∈ B(K). Let λmax be the maximal eigenvalue of
C with eigenvector |λmax⟩ and λmin be the minimal eigenvalue with eigenvector |λmin⟩, and let
R = (λmax−λmin)/2. By the pigeonhole principle, at least ⌈d/2⌉ of the eigenvalues lie in the interval
[λmax − R, λmax] or in [λmin, λmin + R]. Without loss of generality we assume the former so that
there are ≥ d/2 of them are in [λmax −R, λmax].

In the eigenbasis {|λmin⟩ , . . . , |λmax⟩} of C, the vector U |λmin⟩ is the first column of a Haar-
random unitary U ∈ U(d). Hence by the same symmetry argument that E|Ui1|2 = 1/d for each i. A
direct calculation shows

E∥[C,U ]∥2op ≥ E∥(C − λmin1)U |λmin⟩∥22 = E
∑
i

|λi − λmin|2|Uia|2

≥ E
∑

λi∈[λmax−R,λmax]

|λi − λmin|2|Uia|2 ≥
d

2
R2 1

d
=
R2

2
.

The exact same proof then leads to
√
2 factor for the self-adjoint case and consequently 2

√
2 for the

general case.

3.2 Doubly probabilistic Stampfli’s theorem

While Thm. 3.3 is a proper generalization of the original Stampfli’s theorem, we note that the
Haar-random single-qubit assumption is still not physical enough. Indeed, it requires verifications
of almost commutation over all single-qubit subspaces K ∈ Gr(2,H), which is unrealistic.

We therefore consider a doubly probabilistic generalization: also randomly sample two-dimensional
subspaces K ∈ Gr(2,H) and then check the almost commutation for Haar-random unitaries in B(K).
This is far more reasonable in physical implementations.

However, the random sampling of two-dimensional subspaces in infinite-dimensional H does not
make sense. In fact, it is well-known that the Grassmannian Gr(2,H) does not admit a non-trivial,
σ-finite, U(H)-invariant Borel measure when dim(H) = ∞. Hence, we consider the finite-dimensional
setting for the doubly probabilistic generalization.

Now, Gr(2,H) does admit a probability measure νGr(2,H) when dim(H) = d <∞. In particular,
the notion of a random two-dimensional subspace K is equivalent to the following:

(a) Fix two orthonormal vectors |v1⟩ , |v2⟩ ∈ H as the reference two-dimensional subspace.

(b) There exists some Haar-random U(d)-unitary V ∈ B(H) such that K = V Span {|v1⟩ , |v2⟩}.

Thanks to the invariance of Haar measures, |v1⟩ and |v2⟩ can be chosen arbitrarily. This allows us
to formulate and prove another generalization of Stampfli’s theorem.
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Theorem 3.5 (Doubly probabilistic Stampfli’s theorem). Let H be a d-dimensional Hilbert space
and let C ∈ B(H). Given ε > 0 and δ, η ∈ [0, 1], suppose that

Pr
K∼νGr(2,H)

{
Pr

U∼µK
{∥[PKCPK, U ]∥op ≤ ε} ≥ 1− δ

}
≥ 1− η, (22)

where PK denotes the projection onto K. Then

inf
c∈C

∥∥C − c1H
∥∥
op

≤ 2

√
d2 − 1

6
min

(√
(1− η)(1− δ) ε+ 2∥C∥op

√
δ(1− η) + η,

√
1− η

⌈ 1

1− δ

⌉
ε+ 2∥C∥op

√
η

)
.

(23)

and this upper bound necessarily depends on the dimension d. In addition, the leading factor can be
reduced to

√
(d2 − 1)/6 when C is self-adjoint.

Depending on the specific values of (ε, δ, η, ∥C∥op), one bound might be tighter than the other.

Proof. Let us begin with the first bound 2
√

d2−1
6

(√
(1− η)(1− δ) ε+ 2∥C∥op

√
δ(1− η) + η

)
. It

is sufficient to show the case when C is self-adjoint, as the general case follows by the same
argument in the proof of Thm. 3.3. Analogous to Lem. 3.2, here we instead try to bound
EK∼νGr(2,H)

EU∼µK∥[CK, U ]∥op for CK = PKCPK.
By the definition of expectation values and the trivial commutator bound, the upper bound is

straightforward:

EK∼νGr(2,H)
EU∼µK∥[CK, U ]∥2op ≤ (1− η) ·

(
(1− δ)ε2 + 4δ∥C∥2op

)
+ η · 4∥C∥2op. (24)

For the lower bound, Eq. (17) already shows that

EU∼µK∥[CK, U ]∥2op ≥ 2R(σ(CK))
2,

where R(σ(CK)) is the radius of the spectrum of CK. Thus, the rest of the proof amounts to
calculating EK∼νGr(2,H)

R(σ(CK)).

We first calculate R(σ(CK))
2. To this end, denote by λi the eigenvalues of C with the corre-

sponding eigenvectors |λi⟩. By the discussion preceding the theorem, there exists some Haar-random
U(d)-unitary V ∈ B(H) such that K = V Span {|λ1⟩ , |λ2⟩}. It follows from C =

∑
k λk|λk⟩⟨λk| that

(CK)ij = ⟨λi|V ∗CV |λj⟩ =
∑
k

λkV̄kiVkj

in the basis {V |λ1⟩ , V |λ2⟩}. Then

R(σ(CK))
2 =

1

4
(Tr(CK)

2 − 4 det(CK))

=
∑
k,l

λkλl
(
V̄k1Vk1V̄l1Vl1 + V̄k2Vk2V̄k2Vk2 − 2V̄k1Vk1V̄l2Vl2 + 4V̄k1Vk2V̄l2Vl1

)
,

using the convenient trace-determinant formula for 2× 2 matrices.
To compute EK∼νGr(2,H)

(Vk1a1Vk2a2 V̄l1b1 V̄l2b2) for a Haar-random unitary V ∈ B(H), we can use
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Weingarten calculus [CŚ06, Cor. 2.4]. One checks that

EK∼νGr(2,H)
R(σ(CK))

2 =
1

4

∑
k,l

λkλl
6δkl − 6

d(d2 − 1)

=
3

2d(d2 − 1)

(
dTr

(
C2
)
− Tr(C)2

)
≥ 3

(d2 − 1)
R(σ(C))2.

The last inequality with factor (d2 − 1) is in fact sharp. To see this, observe that (dTr
(
C2
)
−

Tr(C)2)/d2 is the variance of {λi} with uniform distribution. Given a fixed R(σ(C)) = (λmax −
λmin)/2, the variance is minimized when all non-extremal eigenvalues λi = (λmax + λmin)/2, whence
dTr

(
C2
)
− Tr(C)2 = 2dR(σ(C)). Another sanity check is to consider d = 2 which gives the trivial

constant 1.
It follows that

EK∼νGr(2,H)
EU∼µK∥[CK, U ]∥2op ≥ 3R(σ(C))2

(d2 − 1)
,

and we are done by Eq. (24).

Finally, we show the second bound
√
1− η

⌈
1

1−δ

⌉
ε+ 2∥C∥op

√
η. Recall Eq. (18) from the proof

of Lem. 3.2, every V ∈ U(K) satisfies that ∥[CK, V ]∥op ≤ ⌈ 1
1−δ ⌉ε. That is,

Pr
K∼νGr(2,H)

{
Pr

V∼µK
{∥[PKCPK, V ]∥op ≤ ⌈ 1

1− δ
⌉ε} ≥ 1− 0

}
≥ 1− η.

Then we are done by setting ε→ ⌈ 1
1−δ ⌉ε and δ → 0 into the first bound.

Observe that if one has the power to verify the ε-almost commutation directly over the unitary
group U(H) of H beyond just the two-dimensional qubit unitaries, then Rem. 3.4 applies and the
conclusion of Thm. 3.5 simplifies to Eq. (21).

3.3 Approximate Tsirelson’s theorem from Haar-random single-qubit unitary

We refer to the method of randomly sampling a single-qubit subspace K ∈ Gr(2,H) and then
certifying commutation with Haar-random U(2)-unitaries in B(K) as Haar-random single-qubit
unitary sampling. Thus, with the doubly probabilistic Stampfli’s theorem as in Thm. 3.5, we can
analogously formulate and prove an approximate version of Tsirelson’s theorem, resulting in another
version of the quantitative Ozawa’s result [Oza13b].

Lemma 3.6. Consider two Hilbert spaces H1 with dimension d1 and H2 with dimension d2, and let
C ∈ B(H1 ⊗H2). Given ε > 0 and δ, η ∈ [0, 1], suppose that

Pr
K∼µGr(2,H2)

{
Pr

U∼µK
{∥[(11 ⊗ PK)C(11 ⊗ PK),11 ⊗ U ]∥op ≤ ε} ≥ 1− δ

}
≥ 1− η, (25)

where PK denotes the projection onto K ⊂ H2.
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Then C ′ = 1/d2TrH2(C) ∈ B(H1) satisfies

∥C − C ′ ⊗ 12∥op ≤ 2d1

√
d22 − 1

6
min

(√
(1− η)(1− δ) ε+ 2∥C∥op

√
δ(1− η) + η,

√
1− η

⌈ 1

1− δ

⌉
ε+ 2∥C∥op

√
η

)
.

(26)

Consequently, if C is positive semidefinite then so is C ′. Note the leading constant 2d1 can be
improved to d1 when C is self-adjoint.

Proof. This proof is almost identical to that of Lem. 2.2. Adopting the same notation, we point out
the only difference: Thm. 3.5 implies that

∥C(kl) − ckl12∥op ≤ 2

√
d22 − 1

6
min

(√
(1− η)(1− δ) ε+ 2∥C∥op

√
δ(1− η) + η,

√
1− η

⌈ 1

1− δ

⌉
ε+ 2∥C∥op

√
η

)
,

where we use the fact that ∥C∥op ≥ ∥C(kl)∥op. Hence,

∥C − C ′ ⊗ 12∥op ≤ d1max
k,l

∥C(kl) − ckl12∥op

gives the desired bound. Note that the above inequality is sharp when all ckl are the same, meaning
that the dimension scaling d1 is also unavoidable.

For the non-simple version of approximate Tsirelson’s theorem, similarly to Thm. 2.5, one needs
to assume additional commutator bounds with the simple projections.

Theorem 3.7 (Approximate Tsirelson’s theorem, Haar-random unitary case). Let A be generated by
finitely-many contractive self-adjoint operators {Aa|x} ⊂ B(H) and B be generated by finitely-many
contractive self-adjoint operators {Bb|y} ⊂ B(H) for some d-dimensional Hilbert space H. Suppose
that A admits the Artin-Wedderburn decomposition

A =
L⊕
l=1

Al ≃
L⊕
l=1

B(Hl
A)⊗ 1lB and Aa|x =

L⊕
l=1

Ala|x ⊗ 1
l
B,

with the corresponding orthogonal projectors Πl onto the direct summands.
Given ε > 0 and δ, η ∈ [0, 1]. Suppose that,

Pr
Kl∼ν

Gr(2,Hl
A

)

{
Pr

U∼µKl

{∥[[Ul ⊗ 1lB, (PKl ⊗ 1lB)ΠlBb|yΠl(PKl ⊗ 1lB)]∥op ≤ ε} ≥ 1− δ

}
≥ 1− η, (27)

where PKl denotes the projection onto Kl ⊂ Hl
A. Furthermore, assume that for all b, y, l

∥[Πl, Bb|y]∥op ≤ ε. (28)
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Then there exist operators B′
b|y ∈

⊕L
l=1 1

l
A ⊗B(Hl

B) = A′ such that, for all b, y,

∥Bb|y −B′
b|y∥op ≤ d(d− 1)ε+ d

√
d2 − 1

6
min

(√
(1− η)(1− δ) ε+ 2

√
δ(1− η) + η,

√
1− η

⌈ 1

1− δ

⌉
ε+ 2

√
η

)
.

(29)

In addition, if Bb|y is positive then so is B′
b|y. Note that the bound has an O(d2ε) scaling.

Proof. The proof is analogous to that of Thm. 2.5 so we only give a sketch. Since Bb|y is self-adjoint

and ∥Bb|y∥op ≤ 1, by Lem. 3.6, there exists for each l some positive Bl
b|y ∈ B(Hl

B) such that

∥ΠlBb|yΠl − 1lA ⊗Bl
b|y∥op ≤ dl

√
d2l − 1

6
min

(√
(1− η)(1− δ) ε+ 2∥C∥op

√
δ(1− η) + η,

√
1− η

⌈ 1

1− δ

⌉
ε+ 2∥C∥op

√
η

)
,

where dl = dim(Hl
A ⊗Hl

B). The commutation assumption of Bb|y with Πl implies

∥Bb|y −
∑
l

ΠlBb|yΠl∥op ≤ L(L− 1)ε ≤ d(d− 1)ε.

Define B′
b|y :=

⊕L
l=1 1

l
A ⊗Bl

b|y, and we are done by the triangle inequality.

4 Applications and outlook

Our main results, Thm. 2.5 and Thm. 3.7, establish quantitative approximate versions of Tsirelson’s
theorem from two distinct perspectives on almost commutation. The first approach (Thm. 2.5)
provides an error guarantee contingent on potentially hard-to-determine algebraic complexity
parameters c1, c2, c3 (discussed in Rem. 2.6), scaling roughly as O(c21c

2
2c

2
3d

2ε). The second, doubly
probabilistic formulation (Thm. 3.7) yields a bound scaling as O(d2ε) with prefactors dependent
on probabilistic confidence parameters (δ, η) of random unitary sampling and assumptions about
commutation with simple-block projectors. This offers a trade-off, making the latter potentially
advantageous when algebra generation is difficult, but probabilistic checks are feasible. Both methods
confirm the overall O(d2ε) error bounds, and these discussions can be generalized to multipartite
scenarios by induction, akin to the original Tsirelson’s theorem.

In this last section, we begin with an application to quantum information theory, as teased
in Sec. 1.2: the construction of an approximating tensor-product strategy (Prop. 4.1) based on
our main theorems. Next, we discuss the implications of our results in the context of the NPA
hierarchy and the known computational complexity results, giving scenarios with non-negligible
approximation error (Rem. 4.2). Then, we connect our works to the broader historical context on
approximating almost commuting matrices with genuinely commuting ones (Sec. 4.3). Lastly, we
finish by discussing the implications of our work and outlining future possible research directions.
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4.1 Constructing tensor-product approximation

For clarity, a tensor-product quantum strategy is a triple ({Aa|x}, {Bb|y}, ρ) on a Hilbert space
H = HA ⊗ HB, where for each x the family {Aa|x} ⊂ B(HA) is a POVM (i.e., Aa|x ≥ 0 and∑

aAa|x = 1A), for each y the family {Bb|y} ⊂ B(HB) is a POVM, and ρ ∈ B(H) is a positive
operator with Tr(ρ) = 1. The associated correlations are

p(ab|xy) = Tr
(
ρ · (Aa|x ⊗Bb|y)

)
.

By contrast, a commuting operator quantum strategy is a triple ({Aa|x}, {Bb|y}, ρ) on a single Hilbert
space H, where {Aa|x}, {Bb|y} ⊂ B(H) are POVMs such that [Aa|x, Bb|y] = 0 for all a, b, x, y with
correlations

p(ab|xy) = Tr
(
ρ ·Aa|x ·Bb|y

)
.

As recalled in Sec. 1.2, these two models are equivalent when H is finite-dimensional by Tsirelson’s
theorem.

In what follows, we relax exact commutation to ε-almost commutation (in the senses made
precise in Theorems 2.5 and 3.7) and show how our results yield a constructive procedure: from
any d-dimensional ε-almost commuting strategy, one can build a tensor-product strategy whose
correlations approximate the original ones up to O(d2ε).

Proposition 4.1. Given a quantum strategy (Aa|x, Bb|y, ρ) on a d-dimensional Hilbert space H that
is ε-almost commuting (in the sense of Thms. 2.5 or 3.7). Then there exist Hilbert spaces HA,HB

and a tensor-product strategy (Ãa|x, B̃b|y, ρ̃) on HA ⊗HB such that its correlations are O(d2ε)-close
to those of the original ε-almost commuting strategy (Aa|x, Bb|y, ρ).

Proof. The Artin-Wedderburn decomposition of the algebra generated by {Aa|x} implies that

H =
⊕

lHl
A ⊗Hl

B with

Aa|x =
⊕
l

Ala|x ⊗ 1
l
B ∈

⊕
l

B(Hl
A)⊗ 1lB.

Let Πl be the orthogonal projectors to the i-th summand B(Hl
A)⊗ 1lB. By Thm. 2.5 or 3.7, for all

b, y, the operators Bb|y can be approximated within O(d2ε) in operator norm by positive operators

B′
b|y =

⊕
l

1lA ⊗ 1

dlA
TrHl

A

(
ΠlBb|yΠl

)
∈
⊕
l

1lA ⊗B(Hl
B).

They satisfy
∑

bB
′
b|y = 1 since the normalized partial trace is unital and

∑
bBb|y = 1, hence forming

POVMs. This yields an exactly commuting strategy (Aa|x, B
′
b|y, ρ) on H which is O(d2ε)-close to

the original strategy.
We construct the equivalent tensor-product strategy (Ãa|x, B̃b|y, ρ̃) as follows: Let HA =

⊕
lHl

A

and HB =
⊕

lHl
B. Define new operators

Ãa|x =
⊕
l

Ala|x ∈ B(HA), B̃b|y =
⊕
l

1

dlA
TrHl

A

(
ΠlBb|yΠl

)
∈ B(HB),

and the new state

ρ̃ = ι(ρ) ∈ B(HA ⊗HB)
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via the natural embedding ι : B(
⊕

lHl
A ⊗ Hl

B) → B(HA ⊗ HB). Thanks to the block structure
of ρ̃, one can directly check that the correlations of (Aa|x, B

′
b|y, ρ) are preserved by (Ãa|x, B̃b|y, ρ̃),

consequently O(d2ε)-close to those of the original strategy.

We note that our constructions recover the standard Tsirelson’s theorem asymptotically as
ε→ 0, indicating our result is a quantitative version of [Oza13b].

4.2 NPA hierarchy and computational complexity

We comment on an interesting consequence of our approximate Tsirelson’s theorem in relation to
the NPA hierarchy [NPA08; PNA10], an important tool in the studies of quantum correlations.
This connection has implications for understanding when the approximation error from our theorem
must necessarily be significant.

Remark 4.2. The NPA hierarchy provides a sequence of constraints, indexed by level N , that
characterize correlations arising from commuting observable strategies. This hierarchy is complete
in the limit N → ∞. At a finite level N , an NPA strategy SN can be realized in a dN -dimensional
Hilbert space and involves observables that are O(1/

√
N)-almost commuting [CV15, Thm. 23].

Our Thm. 2.5 states that such an O(1/
√
N)-almost commuting strategy SN can be approximated

by a genuine tensor-product strategy with an operator norm error of O(d2N/
√
N). We argue that

this error term cannot always vanish as N → ∞ due to computational complexity arguments.

1. Consider the result MIP∗ = RE [Ji+21]. This implies there are problems (specifically, RE-
hard problems) for which the closure of the set of correlations achievable with tensor-product
strategies (Cqa) is strictly smaller than the set achievable with commuting observable strategies
(Cqc), i.e., Cqa ⊊ Cqc. The NPA strategies SN generate correlations that converge towards
Cqc. Our approximation, being a tensor-product strategy, generates correlations within Cqa.

Hence, the approximation error O(d2N/
√
N) must be generally non-vanishing in the limit

N → ∞. If not, i.e., the error vanished, it would imply Cqa could approximate Cqc arbitrarily
well, contradicting the known set separation.

2. A similar line of reasoning applies to the conjecture MIPco = coRE [Ji+21] (more precisely, the
gaped decision problem of quantum commuting value is coRE-hard). If this conjecture holds, it
would imply the existence of coRE-hard problems where O(1/

√
N)-almost commuting strategies

SN can achieve outcomes (e.g., Bell scores) significantly larger than those achievable by any
strictly commuting observable strategy (and thus, by any tensor-product strategy). In such a
scenario, these SN strategies would be inherently “far” from any tensor-product approximation.
Consequently, our approximation of SN by a tensor-product strategy must necessarily result in
a non-vanishing error of O(d2N/

√
N) to account for this performance gap.

In essence, these complexity results highlight scenarios where the distinction between almost-
commuting and strictly commuting (or tensor-product) models is presented. Our quantitative theorems
provide a bound on how well one can bridge this distinction, and these complexity results suggest
that our error bound, or indeed any such bound, cannot universally tend to zero.

4.3 Relation to prior works on almost commuting matrices

The question of whether matrices or operators that almost commute are necessarily close to a
genuinely commuting pair is a longstanding problem with a rich history, initiated by Rosenthal [Ros69]
for the normalized Hilbert-Schmidt norm and Halmos [Hal76] for the operator norm. Early studies
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in the operator norm (e.g., [LT70; PS79]) often yielded affirmative answers, though typically with
dimension-dependent error bounds.

The search for dimension-independent bounds revealed a crucial dichotomy in the operator norm.
Voiculescu [Voi83] showed that almost commuting unitary matrices need not be close to commuting
ones (incidentally by considering clock-and-shift matrices Σ3,Σ1), and Choi [Cho88] extended this
negative result to general matrices. In contrast, Lin’s theorem [FR96; Lin96] provided a positive
dimension-independent answer for a pair of self-adjoint matrices. Recently, extending the scope to
infinite dimensions and multiple operators, [Lin24] has connected the approximability of self-adjoint
operators to spectral properties.

In parallel, the searches for dimension-independent bounds in the normalized Hilbert-Schmidt
norm established affirmative results for a pair of normal [Gle10], self-adjoint [FK10], and unitary
matrices [HS18]. More recently, Ioana [Ioa24] further confirms approximability if at least one matrix
is normal, while showing a negative result for general matrices.

Our work contributes to this area by considering two (thus, inductively, multiple) finite-
dimensional C∗-algebras whose generators almost commute, formulated either in terms of operator
norm bounds against specific matrix generators (like clock-and-shift matrices) or via a probabilistic
formulation involving Haar-random unitaries. For both, we characterize how close these algebras are
to having genuinely commuting counterparts (or admitting an approximate tensor-product structure
by Prop. 4.1) in the operator norm, deriving bounds that exhibit dependence on the dimension
d. Given the discussion in Rem 4.2 based on known separations due to computational complexity
results [Ji+21], we do not expect such dimension dependence in the error bounds to be removable.

4.4 Discussions and future directions

Fundamentally, Tsirelson’s theorem connects the tensor-product formalism with the commuting
observable formalism for composite finite-dimensional quantum systems. While strict commutation
can be conceptually enforced by space-like separation, many physical scenarios or experimental
setups might only guarantee approximate independence due to correlated noise, imperfect isolation,
or other constraints. Our approximate Tsirelson’s theorems (Thm. 2.5 and Thm. 3.7) show that
Tsirelson’s conclusion is robust to such imperfections. They guarantee that ε-almost commuting
observables (in either the deterministic or probabilistic sense) necessarily imply that the system’s
correlations are O(d2ε)-close in operator norm to those of genuine tensor-product quantum cor-
relations. This validates the use of tensor-product formulation as an effective model even when
subsystem independence is only approximately satisfied.

As detailed above in Rem. 4.2, our findings interface with the NPA hierarchy. This connection
is crucial, as it highlights, through computational complexity results like MIP∗ = RE [Ji+21], that
for certain problems the approximation error O(d2N/

√
N) from our theorems cannot be universally

negligible. This signifies a fundamental limitation in approximating certain almost-commuting
strategies with tensor-product strategies, a limitation our quantitative error bounds necessarily
reflect. Conversely, for scenarios without this intrinsic separation, improving our error bounds
remains interesting for applications like robust self-testing [ŠB20].

Furthermore, our probabilistic Stampfli’s theorems (Thm. 3.3 and Thm. 3.5) open possibilities
beyond Tsirelson’s problem itself. It is natural to explore probabilistic commutation hypotheses
in intrinsically infinite-dimensional settings, for instance, by sampling random unitaries using
frameworks like free probability theory [MS17]. Viewing Stampfli’s theorem as a generalization of
Schur’s lemma, another promising direction involves investigating whether our probabilistic versions
can lead to analogous generalizations of other consequences of Schur’s lemma, such as probabilistic
Schur-Weyl duality, which could in turn lead to probabilistic formulations of quantum de Finetti
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theorems [Ren08].
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