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ABSTRACT. A x-linear map ® between matrix spaces is cross-positive if it is positive
on orthogonal pairs (U, V) of positive semidefinite matrices in the sense that (U, V) :=
tr(UV) = 0 implies (®(U), V) > 0, and is completely cross-positive if all its ampliations
I,®® are cross-positive. (Completely) cross-positive maps arise in the theory of operator
semigroups, where they are sometimes called exponentially-positive maps, and are also
important in the theory of affine processes on symmetric cones in mathematical finance.
To each ® as above a bihomogeneous form is associated by pe(z,y) = y? ®(zxT)y.
Then ® is cross-positive if and only if pg is nonnegative on the variety of pairs of orthog-
onal vectors {(z,y) | 7y = 0}. Moreover, ® is shown to be completely cross-positive
if and only if pg is a sum of squares modulo the principal ideal (z7y). These observa-
tions bring the study of cross-positive maps into the powerful setting of real algebraic
geometry. Here this interplay is exploited to prove quantitative bounds on the fraction
of cross-positive maps that are completely cross-positive. Detailed results about cross-
positive maps ® mapping between 3 x 3 matrices are given. Finally, an algorithm to
produce cross-positive maps that are not completely cross-positive is presented.
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1. INTRODUCTION

Let M, (R) be the vector space of n x n real matrices equipped with the involution
T which is the usual transposition of matrices. We use M,,(R)», to denote the set of all
positive semidefinite (symmetric) matrices. We let I, (resp. 0,,) stand for the nxn identity
(resp. zero) matrix. A linear map A : M,(R) — M, (R) is *-linear if A(UT) = A(U)? for
all U € M,(R). A xlinear map A is positive if it maps positive semidefinite matrices
into positive semidefinite matrices, and is completely positive if the ampliations

I @ A: Mp(R) @ M,(R) = Mp(R) @ M,(R), UV +—U®AV)

are positive for every k € N. Here ® stands for the Kronecker tensor product of matrices.
Relaxing positivity of A to the condition

(1.1) YU,V € My(R)so: (UV)Y=0 = (A(U),V) >0,

where (_, ) denotes the standard scalar product on M, (R), i.e., (B, C) := tr(CT B), gives
a definition of a cross-positivity of A in which case A is cross-positive. Similarly, we
call A completely cross-positive if

(1.2) VEkEN, VU,V € Mu(R)wo : (U, V) =0 = (I, ® A)(U),V) > 0.

In [23] the authors construct, for the first time, a proper cross-positive map A, that is,
a cross-positive map that is not completely cross-positive. Such maps and the associated
one-parameter semigroups (under composition) {exp(tA): ¢t > 0} of endomorphisms of a
symmetric cone are an important ingredient in the theory of affine processes on symmet-
ric cones. In the semigroup theory cross-positive (resp. completely cross-positive) maps
are known as exponentially-positive (resp. completely exponentially-positive) maps (see
Section 2.1 for details). Affine processes play a major role in math finance [14]; they are
simple enough to be tractable from the point of view of theory and numerics, while at
the same time sufficiently flexible from a modeling point of view. Affine processes on the
cone of real positive semidefinite matrices were classified in [13, Theorem 2.4], see also [14,
Theorem 2.19] for the classification of affine processes on all symmetric cones. According
to the classification, the linear drift of an affine process is given by a cross-positive map.
The cross-positive map defining the drift is unique only modulo an integral with respect
to a measure that describes jumps of the affine process. The operator defined by the
integral is completely positive, so a drift defined by a cross-positive, but not completely,
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cross-positive map cannot be removed by a change of measure. See [14] or [23, Section 6]
for more details.

In this paper we investigate and quantify the gap between cross-positive maps and
completely cross-positive maps, and provide an algorithm for providing further examples
of proper cross-positive maps. In addition to matrix analysis our main tools include real
algebraic geometry [8], convexity [37, 3] and harmonic analysis [16].

1.1. Main results and readers’ guide. In the preliminary Section 2 we translate the
properties of x-linear maps A : M,,(R) — M, (R) to properties of biquadratic forms

(1.3) pa =y A(xx")y € Rx,y],

where x = (x1,...,%,), ¥ = (y1,...,¥a) are tuples of commuting indeterminates. Then
we explain that completely cross-positive maps are much tamer and easier to handle
than cross-positive maps, resembling the well-known relationship between positive and
completely positive maps [12, 1, 22, 40].

The main contribution of this article is three-fold. First, we quantify the gap between
cross-positive and completely cross-positive maps. Roughly speaking, very few cross-
positive maps are completely cross-positive. More precisely, as shown in Corollary 4.8,
the probability p, that a cross-positive map M, (R) — M, (R) is completely cross-positive,

1)\ 2
is less than (C’n)fé( )" for an absolute constant C, so lim p, = 0. Our proof roughly
n—oo

follows Blekherman’s outline in his papers characterizing the gap between positive and
sum of squares polynomials [5, 3]. A key new ingredient in the proof is a dimension-
independent reverse Holder inequality for bilinear biforms given in Section 4.3.

Section 3 considers the smallest nontrivial case, that is, the case of cross-positive maps
A M3(R) — M3(R). We give real algebraic geometry inspired certificates (Nichtnega-
tivstellensétze) for A to be cross-positive; see Theorem 3.4 for the case when A satisfies
some mild nonsingularity-type assumption, and Corollary 3.11 for the singular case.

Finally, in Section 5, as a side product of our analysis we provide a randomized
polynomial-time algorithm based on semidefinite programming [43] for producing proper

cross-positive maps.

2. PRELIMINARIES

2.1. Cross-positivity in the language of operator semigroups. Consider a *-linear
map A : M,(R) — M,(R). For each t € R the linear map exp(tA) : M,(R) — M,(R)
is defined by exp(tA) = > %(tA)". The operator valued function ¢ — exp(tA) is the
solution of the differential equation X (t) = AX(t), which makes it important in analysis
and applications to physics [25] and math finance [13, 14]. The well-known formula

exp((s +t)A) = exp(sA) o exp(tA) implies that the set
{exp(tA): t > 0}

is a (one-parameter) semigroup under composition. The *-linear map A is the generator
of this one-parameter semigroup. We call A exponentially-positive, resp. completely
exponentially-positive, if exp(tA) is a positive, resp. completely positive map for all
t > 0. In such a case the semigroup {exp(tA): ¢t > 0} is a positive, resp. completely
positive one-parameter semigroup. Note the positivity of linear maps and their one-
parameter semigroups is studied more generally over ordered vector spaces, in finite and
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infinite dimensions, and for bounded and unbounded linear operators. We refer the reader
to [17, 30] for detailed studies.

The (complete) exponential positivity property can be rephrased in a more traditional
matrix theory using (complete) cross-positivity.

Theorem 2.1 ([38, Theorem 3]). A x-linear map A : M,,(R) — M, (R) is exponentially-
positive if and only if it is cross-positive.

Corollary 2.2. A x-linear map A : M,(R) — M, (R) is completely exponentially-positive
iof and only if it is completely cross-positive.

Proof. By definition, A is completely cross-positive if and only if I ® A is cross-positive
for each k € N. By Theorem 2.1 this holds if and only if I, ® A is exponentially-positive
for each k € N, i.e., if and only if

00 1 . '
VEEN,VE>0VX =0 : exp(t(l,® A)(X) =) it (I ® A)'(X)

= (neY %(m)i) (X) = (I, ® exp(tA))(X) = 0.

However, this is equivalent to complete positivity of exp(tA) for each ¢ > 0, i.e., to
complete exponential positivity of A. [

2.2. Cross-positive maps and biquadratic biforms. Let n > 2 and let S, (R) stand
for the set of all real symmetric n x n matrices. To each linear map A : S,,(R) — S,,(R) we
assign the biquadratic form p4 € R[x,y] asin (1.3). Let I C R[x,y] be the ideal generated
by y'x =Y | %y, and let V(I) be the corresponding real variety

V(I):={(z,y) e R" x R" | y'z = 0}.

The variety V(I) is an irreducible hypersurface for n > 2 and the defining polynomial
yTx changes sign on R*". Hence the ideal [ is real radical [8, Theorem 4.5.1]. Thus I is
the vanishing ideal of V(I), i.e., a polynomial p € R[x,y] vanishes on V' (/) if and only if
p el

A sum of a positive map and a map of the form

(2.1) A(X)=CX +XC"  for some C € M,(R) and for all X € M,(R)

is clearly cross-positive. The converse is true up to closure, see [38, Lemma 6 and Theorem
2]. Tt was long conjectured that each cross-positive map is a sum of a positive map and
a map of the form (2.1) (see [15, Section 4] or [13, p.409]), but a counterexample was
found in [23]. Such counterexamples were called exotic cross-positive maps in [23]. On
the other hand, an analogous counterexample does not exist for completely cross-positive
maps (see [25, Theorem 3]).

The following is a special case of [23, Corollary 15] and [39, Theorem 2], but can also
be established by a straight-forward calculation.

Lemma 2.3. For a linear map A : S,(R) — S,(R) we have py € I if and only if it is of
the form (2.1) for every X € S,(R).

The following lemma bounds the degrees of the forms needed in the sum of squares
representations of biquadratic biforms modulo 1.
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Lemma 2.4. Let a biquadratic biform p € R([x,y| be of the form

k
(2:2) p=> 1i+q
i=1

for some k € N, p; € Rlx,y] and ¢ € I. Then p is a sum of squares of bilinear forms
modulo the ideal I.

Proof. The polynomial ¢ is of the form ¢ = r(x,y) (Y1, x;y;) where r(x,y) € R[x,y]. Let
us write p; ; and r; to denote the homogeneous parts of p; and r of degree j. By comparing
the degree 0 parts of both sides of (2.2) we conclude that p; o = 0 for each i. Polynomials
pia(x,y) are of the form p; 1 (x,y) = >_,_, (airxe + b;cye) where a;, € R, b;, € R. If any of
a;y or b;y is nonzero, then x7 or y? should appear in p with a positive coefficient, which
is not true. Hence, p;; = 0 for each ¢ and consequently ry = r; = 0. By comparing the
degree 4 parts of both sides of (2.2) we get p= S, P2y +ra( X xiyi), where pio(x,y)
and ry are linear combinations of monomials of the form x; x;,, y;,y;, and x;,y;, for some
J1,72 € {1,...,n}. Since p is a biform of bidegree (2,2), we conclude that only monomials
of the form x,,y,, appear nontrivially in p; o and ro. This proves the lemma. [ |

We define the map V¥ : (x,a) — (x,y) given by

Y1 = Q1,

(2.3) Yi = iy — QX fori=2,...,n—1,
Yn = —Qp_1Tp—1,

where oo = (o, ..., 1) is a tuple of commuting variables.

Note that the image W(R?*"™!) of ¥ is dense in V(I) in the usual Euclidean topology.
This follows by noticing that every point in V(I) can be approximated arbitrarily well by
points with nonzero x;-coordinates, which are in W(R?"™!) since expressing a; from the
system (2.3) above is then well-defined.

Under the map W the biquadratic form ps € R[x,y] of (1.3) corresponds to

(2.4) qa(x, @) = pa(¥(x,q)) € Rlx, al,
which is a form quartic in x and quadratic in .

Proposition 2.5. For a x-linear map A : M, (R) — M, (R) the following are equivalent:
(i) A is cross-positive;
(ii) pa >0 on V(I);
(iii) ga > 0 on R*"~L,

Proof. The equivalence between (ii) and (iii) follows from the fact that ¥(R?**~1) is dense
in V(I) in the Euclidean topology.
(i)=(ii) Given (z,y) € V(I),

(a:xT, ny> = tr(nyJ:xT) =tr (y(yT:U)xT) =0.

Hence pa(z,y) = (A(zzT),yy’) > 0 by assumption.
(i)<=(ii) Assume p, is nonnegative on V' (I). Given U,V € M, (R)xo with (U, V) = 0,
write U = Y wul and V = Y vw!. As the scalar product of two positive semidefinite
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matrices is nonnegative, we deduce (u;,v;) = 0 for all 4, j. The assumption now implies
pa(u;,vj) > 0. Then

(A V) = A ) f) = T pa(ves) 20 .

i7j
We next give the counterpart of Proposition 2.5 for completely cross-positive maps.

Proposition 2.6. Let A:S,(R) — S,(R) be a linear map. The following are equivalent:

(i) A extends to some completely cross-positive map A M,(R) — M,(R);
(i) pa is a sum of squares modulo I;
(iii) g4 is a sum of squares.

In the proof of the proposition we exploit Newton polytopes to restrict possible terms
appearing in a sum of squares representation of gu4.

Let r := (ry,...,7,) € Z stand for a tuple of nonnegative integers, x* for the monomial
x'---x/» and conv(E) C R™ for the convex hull of the set £ C R™. Recall that the
Newton polytope N(p) of a polynomial p(x) = > ¢.x", where ¢, € R\ {0}, is the
convex hull of the exponent vectors of the monomials appearing nontrivially in p, i.e.,

N(p) = conv ({r: x" has a nonzero coefficient in p}) C R".

Proof of Proposition 2.6. (i)=(ii): By [25, Theorem 3], A(X) = ®(X) + CX + XCT for
some completely positive map ® and some C € M,(R). Using [22, Proposition 3.1] for
the restriction &)|gn(R) of d to S,(R) and Lemma 2.3 for X — CX + XC7, it follows that
Py =pa= Zlep? + ¢ for some bilinear forms p; and some biquadratic form ¢ € I, i.e.,
pa is a sum of squares modulo [ by Lemma 2.4.

(i))=-(i): Using [22, Proposition 3.1] and Lemma 2.3, A(X) = ®(X) + CX + XC7T
for some completely positive map ® : S,(R) — S, (R) and some C € M,(R). Invoking
Arveson’s extension theorem [31, Theorem 7.5], there exists a completely positive exten-
sion ® : M,(R) — M,(R) of ®, whence A(X) = ®(X) + CX 4+ XC7T is a completely
cross-positive extension of A.

(ii)=-(iii) is obvious, so we prove (iii)=-(ii). First note the multi-homogeneity of ¢
implies that ¢4 is a sum of squares of biforms that are quadratic in x and linear in ae. Write

(25) QA<x7a) = Zq(£)<x705)27
=1
where q Z Z ]k azxjxk for some c ) € R. Tt follows by definition that

i=1 1<j<k<n
g4 is a linear combination of the terms of the following forms:

o ((1%2)? XX,

o (041X2)(Oéixi+1 - aiflxifl)xjxlm

[ 0100 _1X2Xp—1Xj X[,

b (Oé Xi+1 — OG- 1Xi—1)(OézX£+1 - Ole—1Xe—1)Xij,
o (Oén 1Xn— 1)(04in+1 _Oéiflxifl)xjxky

o (- 1%n-1)% XX,
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where 1,0 = 2,....,n— 1, j,k = 1,...,n. By [34, Theorem 1], we have the inclusions
N(¢“¥) C $N(ga) of Newton polytopes, which implies that each ¢ is a linear combina-
tion of the monomials

(2.6) Q1 X2Xj, X 1%5, Qi 1Xi-1%5, Qp—1Xp—1%j,

wheret=2,....n—1land j=1,...,n.

Claim. Each ¢¥(x,a) can be expressed as a polynomial in the polynomials o;xs,
QoX3 — (X1, « .y Ap_1Xp — Op_2Xp_2, Apn_1Xp—1, X1,...,Xn.

Proof of Claim. We consider how each of the monomials in (2.6) can appear in ¢()(x, ).
For 7 =1,...,n, the monomials

Q1X9X; = (OélXQ)Xj and Up—1Xp—1X; = (an,lxn,l)xj
can clearly by expressed as the claim suggests. The formula

QXX = Z(%XSH — s 1Xs-1)Xs + (@1%2)x3

s=2
implies the same holds also for the monomials o;x;%;11, 1 =2,...,n — 1.
For i =2,...,n — 1, it remains to consider the monomials
(2.7) QiXip1Xj, J # 1, and Qi 1Xi—1Xj, J 7 1.
For s =1,...,n — 2 we define the vectors
as=(0,...,0, a5, as1,0,...,0),
N—— ——
s—1 n—s—2
zeroes zeroes
Xs = (Xla e X,y 07X8+27 s 7Xn)7
Ys = (07 s 707 s p1Xs42 — UsXg, 07 s aO)
—— ——
s zeroes n—s—1

If any of the monomials from (2.7) occurs in ¢ (x, «), then it also occurs in the polynomial
¢ (%;_1,@;_1) with the same coefficient. By definition,

qA(Tic1,@i1) = ¥i1 A ((%\ifl)T 321'71) ?iT,l = (@iXip1 — Oéz‘f1X7;71)2A ((5(\1‘71)T S(\ifl)ii .
Hence, each q(f) (5{\2'_1, @i_l) vanishes on V(OZZ'XH_l - ai—lxi—1)~ Since QX1 — OG—1%—1 is
irreducible in R[x, o] and it changes sign on R?"~! it follows by [8, Theorem 4.5.1] that
(2.8) g9 (Ri1, 1) = (X1 — i1Xim1)Pima (Ric1),
where p;_1 is a linear form in X;_;. Now (2.8) implies that the monomials from (2.7) can
appear nontrivially in ¢(/(%;_1,@;_1) only from the scalar multiple of the term

(aixi—i-l - Oé¢—1Xi—1)Xj,

which concludes the proof of the claim. 0

Using the Claim and (2.5) it follows that p4(x,y) agrees on a dense subset of V' (I) and
by continuity on the whole V(1) with a sum of squares polynomial, which we denote by
r(x,y). Since p4 — r vanishes on V(I), the polynomial yx is irreducible in R[x,y] and
its sign changes on R*"~! it follows that ps — r € I by [8, Theorem 4.5.1]. [
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3. NICHTNEGATIVSTELLENSATZE FOR THE CASE n = 3

In this section we will establish, in the case n = 3, some certificates of global nonnegativ-
ity for the form g4 (x, ) of (2.4) or nonnegativity for pa(x,y) of (1.3) on V(I). By Proposi-
tion 2.5, this yields certificates for a *-linear map A : M3(R) — Mj3(RR) to be cross-positive.

Remark 3.1. In the case n = 2,

QA<X? Oé) - O‘% 'pA((XbX?)’ (X27 _Xl))

and since pa((x1,x2), (x2, —%x1)) is a quartic form, it follows by [19] that g4 is nonnegative
if and only if it is a sum of squares.

For a matrix polynomial A(x) € M,,(R[x]) we denote by tr(A(x)) its trace, i.e., the
sum of the diagonal entries. For a ring R we denote by >_ M,,(R)? the set of all finite sums
of the expressions of the form GTG, where G € M,,(R). Every element of > M,,(R)? is
a sum of squares (sos) matrix polynomial. We say a symmetric matrix polynomial
A(x) € M, (R[x])sym is positive semidefinite (psd) in x € R™ if vT A(z)v > 0 for every
v € R™, and write A(z) = 0. We call A(x) € M,,(R[x])sym psd if it is psd in every € R".

In this paragraph we connect, for every n € N, global nonnegativity of g4(x, «) with
positive semidefiniteness of a certain matrix polynomial. We denote by R[x]pom the set of
homogeneous real polynomials in x. Since g4(x, ) is a quadratic form in « with coefficients
from R[x]pom, We can associate to it a symmetric matrix polynomial Q4 € M,,_1(R[x]|nom)
such that

(3.1) o Qa(x)a = qa(x, ).

Proposition 3.2. The polynomial qa(x, &) is globally nonnegative if and only if Q 4(x) is
positive semidefinite for all x.

Proof. The statement follows by the equality (3.1). ]

Remark 3.3. Note that in the case n = 3, Proposition 3.2 implies that the parameteriza-
tion (2.3) leads to the reduction of the problem of certifying cross-positivity of the map A
to certifying positivity of the 2 x 2 matrix polynomial ) 4. Under the assumption that Q4
does not vanish in any point of R?® we establish such a certificate in Theorem 3.4 below.

Let A(x) € M,,,(R[x]hom) be a matrix polynomial. We call x € R™ a zero of A(x), if
A(z) is a zero matrix. A zero x € R" of A(x) is nontrivial, if x # 0. The following
theorem is the first main result of this section. It is a certificate for ) 4 without nontrivial
zeroes to be psd in case n = 3.

Theorem 3.4. Let Q(x) € My(R[x1, X2, X3]hom) be a 2 X 2 symmetric matriz polynomial
over R[x]nom, i-€., Q(X)T = Q(x). The following statements are equivalent:
(i) Q(x) is positive semidefinite and does not have nontrivial real zeroes.
(i) tr Q is strictly positive on R3\ {0} and det Q is nonnegative on R3\ {0}.
(iii) tr Q is strictly positive on R\ {0} and there exists N € N such that tr(Q)" -det Q
1s a sum of squares of forms.
(iv) trQ is strictly positive on R*\ {0} and there exists N € N such that

(=1 +x+x)"-Q e M(R[x])>.

Moreover, if all entries of Q(x) are of the same degree and Q(x) does not have nontrivial
complez zeroes, then (i)-(iv) imply that:
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(v) If J C R[x] is the ideal in R[x] generated by the polynomial 1 — x? — x3 — x3, then
Q€Y My(R[x])* + My(J).

Proof of the equivalences (i) < (i) < (iii) of Theorem 3./. Since the trace and the deter-
minant of a matrix are the sum and the product of the eigenvalues, respectively, the
equivalence between (i) and (ii) is easy to see. The nontrivial implication (=) in the
equivalence (ii) < (iii) follows by [36, Corollary 3.12]. O

We equip the set of matrix polynomials M,,(C[x]) with the conjugate transpose in-
volution * and write M,,(C[x])per for the subset of hermitian matrix polynomials, i.e.,

F € M,,(C[x]) with F* = F. In the proof of (i) = (iv) of Theorem 3.4 we will make use
of the following factorization lemma.

Lemma 3.5. For QQ = l ;k lc) } € My(C[x])per the following equalities hold:
i~ a 0 a’ 0 a b
(32) Q= {b* a]{() a(ac—bb*)}[o a |’
a? 0 a 0 a —b
(33) { 0 a(ac — bb*) } N { —b* a ] ¢ [ 0 a ] '
Proof. Easy computation. [ |

Proof of the equivalence (i) < (iv) of Theorem 3.4. The nontrivial implication is (=). We

write ) = { Z i } . It is easy to check that

Q:V{ tr(Q) i(a—c)+2b}v*7

i(c—a)+2b tr(Q)

o
where V' = 3 [ L By (3.2),
4 Y tr(Q)?) O T 7%
o0 w@' Q=7 [ oy —ar |7
where V =V (@) 0 and d := i(a—c)+2b. A computation shows tr(Q)*—dd* =
T w(Q - ' P -
4 det Q. Since the left hand side of (3.4) belongs to Ms(R[x]|nom), the right hand side equals
tr(Q)° 0 T tr(Q)° 0 T
i [ 0 atQdetQ | TV 0 4wQdeto |V
=D

where Vi, Vo € My(R[z]) are the real and imaginary parts of V. Now (iv) follows by [36,
Corollary 3.12] since there exists N € N large enough such that each form on the diagonal
of D multiplied by (x2 + x3 + x2)" is a sum of squares of forms. |

Remark 3.6. If @) in Theorem 3.4 is quartic (for example, ) = Q4), then tr@ is a
ternary quartic. Thus it is a sum of three squares by [19]. So in that case the exponent
N in (iv) of Theorem 3.4 depends only on det Q which is of degree 8. By [20] there is a
positive form ¢ of degree 4 such that ¢ det @) is a sum of squares of three forms. Moreover,
¢? det Q is a sum of squares of four forms [24]. See also [35, p. 2830].
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It remains to prove the implication (i) = (v) in Theorem 3.4. We will use Scheiderer’s
local-global principle [36]. For this aim we first prove the following proposition.

Proposition 3.7. Assume in the notation of Theorem 3. that statement (i) holds and
Q(x) does not have nontrivial complex zeroes. Then for every xo € C*\ {0} there exists
a polynomial h € R[x] such that h(xy) # 0 and

W’Q € My(R[x])* + My(J).

Proof of Proposition 3.7. Let us write Q(x) = { ZE:{{; ig; } and choose zo € C*\ {0}.

Since @ is without nontrivial complex zeros, one of the following cases applies:
(1) alzo) # 0.
(2) a(zo) =0 and c(zg) # 0.
(3) a(xg) = ¢(xg) = 0 and b(xy) # 0.

Claim. There exists an orthogonal matrix U € Ms(R) such that, denoting UQU” =

a(x) b(x) .
b(x) ¢(x) ] (z0) # 0.

Proof of Claim. If we are in Case (1), then we can take the identity matrix for U. If we
are in Case (2), then we take a permutation matrix for U. Finally, in Case (3), we define

U= \/Li [ 1 _11 } and note that a(x) = 1(a(x) + 2b(x) + ¢(x)). Hence, a(zo) # 0. O
By (3.2),
_ @ 01[d 0][a b
4 — UT g N 1 - U
“a b a0 d]loal”
where
d =3 €R[x] and d2_a<ac—b2) € R[z].
By (3.3),
d 0 a 0 rla —b
= ~ _|UQU .
AR LA
It follows that dy > 0, dy > 0 on R3. By [36, Theorem 3.2], d; and ds belong to >~ R[x|*+.J.
This concludes the proof. [ |

Proof of the implication (i) = (v) of Theorem 3.J. Let R := R[x]/J be a quotient ring
and let & : R — C(V(J),R) be the natural map, i.e., (f ) = flv(y, where f € R[x],
f = f+J and the variety V(.J) is the set {z e R%: ZZ yx? =1} . Let

L —<h2€R[ [/7: h2Q € Y My(R[x])? +M2(J)>

be an ideal in R[x]/J. If L Were a proper ideal, then all its elements would have a common
zero xy € {x € C*: Y7 22 = 1}. By Proposition 3.7, there exists h € R[x] such that

h(xo) # 0 and h? € L. Hence L is not a proper ideal and thus L = R[x]/.J. In particular,
there exist h3,...,h2 € L such that 1 +.J € (h,...,h3). By [36, Proposition 2.7], there
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exist s1,...,s; € R[x] with s; > 0 on V(J) such that Z?Zl s;h3 € 1+J. By [36, Theorem
3.2], s; € > R[x]* + J. Hence

Zsy (Q + Mo(J)) = Q + My(J) € S My(RI[x])? + M (J),

which concludes the proof. [ |

The following lemma, which holds in every dimension n, gives a special sufficient con-
dition for a biquadratic form p, that is nonnegative on V(1) to be a sum of a globally
nonnegative biquadratic form and an element of /. Using the language of [23], a cross-
positive map A satisfying this condition is not exotic. The lemma will be used in Corollary
3.11 to establish the second main result of this section: a certificate for nonnegativity of
pa on V(I) in the case n = 3 when (4 has a nontrivial real zero.

Lemma 3.8. Let A: M,(R) — M,(R) be a cross-positive map and assume that there
exists a nonzero vector xo € R™ such that
1

(35) (= Tl

Then there exists C € M,(R) such that the map X — A(X) — CX — XC7T is positive.

——zoxp ) A(zoz]) (1, — zoxg ) = Oy

For each © = 1,...,n let e; be the i-th element of the standard basis of R", i.e., the
vector with 1 in the i-th component and 0 elsewhere. We denote by E;; = eiejT the
standard n X n matrix units.

Remark 3.9. In the proof of Lemma 3.8 and Corollary 3.11 below we will use the following
action of GL,, on the set of cross-positive linear maps A : M,,(R) — M, (R):

(9-A)(X)=gA(g7' Xg")g"

Proof of Lemma 3.8. By Remark 3.9 we can assume that zq = e;. Then (3.5) means that
A(Ey;) is of the following form:

A(Eu):{* * }

* Onfl

The idea of the proof consists of the following steps:

(1) There exists a matrix C' € M, (R) such that the map B : M, (R) — M, (R), defined
by B(X) := A(X) — CX — X7, satisfies the following conditions:

) B(Ey;) =0,

) B(Eyi+ Ep)er =0 fori=2,...,n
(2) Using (3.6) and cross-positivity of B it follows that
(3.8) B(Eyi+En)e; =0 fori,j=2,....n

(3) yTB(zaT)y > 0 for every z,y € R™.

To prove (1) first write C' = [ cp - Cy } in column form, where c; are the columns
of ' and note that

(3.9) CEij = [ Onx(i-1) € Onx(n—y |
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where Ogy, stands for the k x ¢ zero matrix. Using (3.9) note that the condition (3.6)
determines ¢y, while conditions in (3.7) determine columns ¢;, i = 2,...,n, i.e.,

1
C = A(Ell)el - §€1TA(E11)€1 * €1,

1 1
C;, = A(Ell + Eﬂ)el - §elTA(Eh + Eﬂ)el c €1 — §€{A(E11)€1 * € for ¢ = 2, o, n.

By (3.6) it follows that pg(e1,y) = 0 (where pp is as in (1.3)) for every y € R". In
particular, %”T‘f(el, y) = 0 for every y € R" and every i = 1,...,n. Since pg(x,y) > 0 on

V(I), for each y L e; there exists a Lagrange multiplier A\(y) € R such that

(3.10) grad pg(er,y) = A(y) grad h(e1,y),
where h(x,y) = y'x. In particular,
_ Ipp

0= ey ) = A(y)g—;l(@hy) —\(y).

and using A(y) = 0 in (3.10) implies that

_ Ipp
- Ox;
Since y is any vector orthogonal to e, this proves (2).

It remains to check (3). We write x = Ae; +v and y = pe; + w for some v, w L e and
some A, € R. Using (3.6)—(3.8) we see that B(eje! + e;el) = 0 for each i = 1,...,n
and thus B(zz?) = B(vw?) = B((ve; +v)(ve; +v)T) for each v € R. If u # 0, then

yT (v — “’Z”el) = 0, therefore cross-positivity of B implies

wlv wlo \7"
0<y'B (v — —el) (’U — —el) y =y’ B(zx")y.
7 p

On the other hand, if © = 0, then a sequence {zj}ren, Where z; := %61 + w, satisfies

z,fel # 0 for each £ € N and y = limy_,o, 2x. By the above, ng(xa:T)zk > 0 for each
k € N, therefore

(3.11) 0

(e1,y) = y' Blere] +eiel)y foreveryi=2,... n.

y' B(zal)y = klim 2 B(zz")z, > 0.
— 00
This concludes the proof of Lemma 3.8. |

Remark 3.10. As a consequence of Lemma 3.8 it follows that testing cross-positivity of
a linear map is a NP-hard problem, since this is true for testing positivity of a biquadratic
form, see, e.g., [26, Theorem 2.2]. Indeed, let A: M, (R) — M, (R) be an arbitrary -
linear map. Let D: M, 11(R) — M,(R) be the map that deletes the first row and column
and let B: M, 1(R) — M,4+1(R) be defined by B(X) = [ 8 A(DO(X))
the map A is positive if and only if B is. However, B(Fy;) = 0 and B(Ey; + E;1) = 0
for i = 2,...,n+ 1, hence the proof of Lemma 3.8 implies that B is positive if and only
if it is cross-positive. Thus the problem of testing whether B is cross-positive is from a
computational complexity viewpoint at least as hard as checking whether A is positive,
implying that testing cross-positivity of a map is NP-hard.

} . It is clear that

Corollary 3.11. Let n = 3 and let p € R[x,y] be a biquadratic form which is nonnegative
on the real variety V(I). Assume that there exist a nonzero vector vg € R3 and two
linearly independent vectors wy,wy L vy such that p(vy,w1) = p(ve, wz) = 0 or that there
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exist a nonzero vector wy € R3 and two linearly independent vectors vy, vy L wqy such that
p(vy,we) = p(va, we) = 0. Thenp € > R[x,y]* + 1.

Proof. By symmetry we can assume that there exist vy € R3\{0} and linearly inde-
pendent vectors wy,wy L vy such that p(vy,w1) = p(ve,w2) = 0. As p is nonnegative
on V(I) it is equal to py for some cross-positive map A: M3(R) — M;3(R). By Re-
mark 3.9 we may assume that vy = e;. By the assumption of the corollary the qua-
dratic form (A, pu) — pa(er, A\wy + pw,) is positive semidefinite with zero coefficients at
A2 and at p?. Consequently, pa(ei, \w;y + paws) = 0 for all \,u € R, or equivalently,
wl A(erel)w = 0 for each w 1 e;. By Lemma 3.8 there exists C' € M3(R) such that
the map B: M3(R) — M;3(R), defined by B(X) = A(X) — CX — XC7, is positive. The
biquadratic form pp satisfies the assumptions of [33, Lemma 4.2], so it is a sum of squares
of bilinear forms. As p4 — pp € I by the construction of B, this proves the corollary. B

4. BLEKHERMAN TYPE VOLUME ESTIMATES

In this section we quantify the gap between cross-positive and completely cross-positive
maps by extending the estimates on the volumes of compact sections of the cones of non-
negative biforms established in [22] to nonnegative biforms on the variety V(I). The
proofs are analogous to those in [22] and are inspired by [5, 3].

Let n > 3 and R[x,y|k, x, be the subspace of biforms of bidegree (ki,ks), i.e.,
polynomials from R[x,y] which are homogeneous of degree k; in x = (x1,...,%,) and of
degree ky in y = (y1,...,ya). Let

Q :=R[x,yl22/(I NR[x,yl22)
be the quotient space. We write

Posy) = {p€ Qipla,y) 20 forall (z,y) € V(D).

k
Sos(Qn) — {pEQ:p—ZP?EI forsomek:ENandpiGR[XaY]l,l}a

i=1

for the cone of polynomials nonnegative on V(I) and the cone of sums of squares on
V(I), respectively. Lemma 2.4 states that if a biform p € R[x, y]2 o is a sum of squares in
R[x,y]/1, then it is a sum of squares in Q.

We will estimate the gap between the cones Pos(Qn
of suitably chosen compact sections of these cones. First we have to carefully introduce
an appropriate measure on the set (S"~! x §"~!') N V(I) with respect to which we will

integrate elements from Q. This is the content of the next subsection.

) and Sos(Qn) by comparing the volumes

4.1. Definition of integration. We define
T:=(S"'xS"HnvV()

and equip it with the subspace topology. Let C(T') denote the vector space of all contin-
uous functions on 7. The special orthogonal group SO(n) acts on the vector space C(T')
by rotating the coordinates, i.e., for g € SO(n) and f € C(T),

(4.1) g-fxy):=flg 'x,97y).
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Choose a point w := (z,y) € T and define a map ¢,, : SO(n) — T by ¢,(9) = gw =
(gz, gy). Observe that since n > 3 the map is surjective and its kernel

ker(¢y) = {g € SO(n): gr =z, gy =y}

is homeomorphic to SO(n — 2). We denote by ¢y, : SO(n)/ ker(¢,,) — T the induced map
of ¢, on SO(n)/ ker(¢,,), which is the set of left cosets of ker(¢,,) in SO(n). Let & be the
Haar measure on SO(n). We equip the quotient space SO(n)/ ker(¢,,) with the positive
normalized SO(n)-invariant measure o induced by & which exists and is unique. (See [29,
Theorem 1 on p. 138] and use the fact that compact groups are unimodular for uniqueness.)

Proposition 4.1. The pushforward (¢,).(c) of o to T is an SO(n)-invariant measure.
Proof. Let A be a Borel subset of 7" and g € SO(n). Then
(00)+(0)(gA) = o ((Pw) ' (92)) = 0(9(u) (D)) = (D) (D)) = (du)-(0)(A),

where we used SO(n)-invariance of o for the third equality and the following calculation
for the second one:

(0uw) " (9A) = {g' € SO(n)/ ker(¢y,): g'w € gA} = {g' € SO(n)/ ker(¢w): ¢~ 'g'w € A}
= g{g" € SO(n)/ ker(¢,,): g"w € A} = g(¢u) H(A). u
Proposition 4.2. There exists a unique normalized SO(n)-invariant measure on T

Proof. We already established the existence of a measure in Proposition 4.1. It remains
to prove the uniqueness. Let us assume to the contrary that p; and py are two different
normalized SO(n)-invariant measures on 7. Then (¢,').(p1) and (¢,').(ug) are two
different normalized SO(n)-invariant measures on SO(n)/ker(¢,). But this contradicts
the uniqueness of o. |

From now on we will denote the measure (¢,,).(c) by o.

Remark 4.3. In [28, 11] the set T is known as the Stiefel manifold V3 ,(R) of all
2—frames in R"”, i.e., the sets of all pairs of orthonormal vectors in R". Equivalently,
Va.n(R) is the set of all real n x 2 matrices X such that X7 X is the 2 x 2 identity matrix.
Regarding T" as a manifold, it can also be equipped with the uniform normalized measure
with respect to the action of the orthogonal group SO(n) [11, §1.4.3]. This measure
coincides with the measure o introduced above.

4.2. Estimates. Now that we defined the measure on 7', we can construct the appropri-
ate sections of Posg and Sosg and present the volume estimates for these sections (see
Theorems 4.5, 4.6 below).

The L? norm of a biform f € Q on T is given by

112 = / P do,

while the supremum norm is

oo (= Imax z,Y)|.
£l = max | (z.3)

Let H(Qn) be the hyperplane of biforms from Q of average 1 on T, i.e.,

H(n):{ : d:}.
o fea /Tfa 1
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/ /
Let (POS(Qn)> and (Sos(Qn)> be the sections of the cones Posg) and SOS(Qn),

™) _ (n) (n)
(POS ) = Posg ﬂ Ho's
™) _ o™ (n)
<SOSQ ) = Sosg ﬂ Ho'
/ /
Thus (Pos(n)> and (Sos(gn)> are convex and compact full-dimensional sets in the finite
dimensional hyperplane Hg). For technical reasons we translate these sections by sub-

tracting the polynomial (31, 27)(d°0, v?), i.e.,

=11

f’\o/sg) = {f €Q:f+ (ZJC?)(ZQE) € (Pos("))/}>
Sos’ = {f €Q: f+ ()X v e (Sos%”)'}'

Let M := M(Q”) be the hyperplane of biforms from Q with average 0 on T,

(4.2) M:{fEQ:/dea:O}.

Since o is normalized,
/ () (X w) =1
T " =1 i=1
and hence - -
PosQn CM and SosQn C M.

The natural L? inner product in Q is defined by

(4.3) ()= [ fodo

With this inner product M is a Hilbert subspace of Q of dimension D, = (";“1)2 —n?-1

and so it is isomorphic to RPM as a Hilbert space. Let Sy, By be the unit sphere and
the unit ball in M, respectively. Let 1) : RPM — M be a unitary isomorphism and ),
the pushforward of the Lebesgue measure p on RPM to M, i.e., . u(E) := u(yv1(E)) for
every Borel measurable set £ C M.

Lemma 4.4. The measure of a Borel set E C M does not depend on the choice of
the unitary isomorphism 1, i.e., if 1 : RPM — M and 5 : RPM — M are unitary
isomorphisms, then (11).pu(E) = (¥9).u(E).

The proof of Lemma 4.4 is the same as the proof of [22, Lemma 1.4].

We are now ready to compare the volumes of the sections defined above. The lower
bound for the volume of the section of nonnegative biforms from Q is as follows:

Theorem 4.5. Forn € N,

3 10°% _ Vol Posy
\/ﬁ - Vol BM
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Next we give the upper bound for the volume of the section of sums of squares biforms

from Q:

Theorem 4.6. For integers n > 3,

—~ (n)
VolSosQ §23-3-6%~
VOIBM

S e

Combining the previous two theorems we obtain:

Corollary 4.7. For integers n > 3,

_1
D

Vol govsg)

25.93.52.103
Vol Posy

32 \/n

In the language of cross-positive and completely cross-positive maps, Corollary 4.7 can
be stated in the following form.

Corollary 4.8. For every n € N the probability that a cross-positive map ® : M,(R) —
M, (R) is completely cross-positive, is bounded above by

Pn < 25.23.52.105 D
" 3%\/5 '

In particular, lim p, = 0.
n—oo

—~ (n

Here, the probability p, is defined as the ratio between the volumes of the sections Sosg

and f’\og(gn) in M.

Remark 4.9. (1) The correspondence (1.3) between -linear maps A : M,(R) —

M,(R) and biquadratic biforms p, is bijective only when maps are restricted
to symmetric matrices S,(R). Since nonnegativity of p4 on V(I) is equivalent
to A being cross-positive (see Proposition 2.5), while p4 being a sum of squares
modulo [ is equivalent to the existence of some completely cross-positive extension
A : M,(R) = M,(R) of the restriction of A to S,(R) (see Proposition 2.6), p, is
clearly an upper bound for the probability that a cross-positive map is completely
cross-positive.

If we want to compare the sizes of two cones K C L C R"” in a fixed metric, then
the most unbiased choice of a compact set C' to compare the sizes of K N C and
L N C is the unit ball B of this metric. In our case, the metric is the L? norm,
coming from the inner product (4.3). In this norm, the condition f € B is given
by a quadratic inequality in the coefficients of f and therefore sharp lower and
upper bounds on K N B (resp. L N B) following the same asymptotics are difficult
to establish. Replacing the unit ball B with a hyperplane whose normal is some
vector from the unit sphere leads to more manageable conditions. The choice of
the hyperplane is not arbitrary, since its position can have a large impact on the
size difference of the intersections, e.g., if the normal is almost perpendicular to
some ray on the boundary of the larger cone L, then the difference in size can
be very large, even if the smaller cone is not significantly smaller. However, if
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there is a vector in the interior of both cones, which is fixed by all symmetries
for each cone, then the orthogonal complement of this vector is a fair choice of
the hyperplane to capture size difference between the cones. In our case, the
polynomial (3 7 2?)(3 7, y7) is a fixed point for the action of the orthogonal
group O(n) on R[x, ]2, defined by O - p(x,y) = p(O~'x,07'y). Note that the
ideal [ is invariant under this action and therefore the action extends naturally
to the action on Q. It is clear that the sets Posg) and SOS(Q") are invariant under
this action and therefore comparing their sizes by intersecting them with 7—[(5) is
an appropriate choice.

(3) Blekherman [5, Theorem 6.1] established volume bounds for sum of squares forms.
Our proofs of Theorems 4.5 and 4.6 freely borrows his ideas. An important in-
gredient in the proof of Theorem 4.6 is also a new version of the Reverse Holder
inequality, which we prove in Section 4.3 below.

(4) In [5] Blekherman proved that for a fixed degree bigger than 2 the ratio between
the volume radii of compact sections of the cones of sum of squares forms and
nonnegative forms goes to 0, as the number of variables goes to infinity. Corollary
4.7 is an analog of his result for sum of squares biquadratic forms and nonnegative
biquadratic forms on Stiefel manifolds V5, (R). (See Remark 4.3.)

Let V be a real vector space. Recall that, for a convex body K with the origin in its
interior, the gauge Gy is defined by

Gr:V =R, Gg(p)=inf{A>0:peX-K}.
Proof of Theorem J.5. We denote K = f’\o/sg). As in [22, §2.1.1] we establish that

Vol K\ Dt -1
> dun
(WBM) > ( / Wl u)

where 1 is a rotation invariant probability measure on Sy,. The proof of the inequality
in Theorem 4.5 now reduces to proving the following claim.

Claim: I1f]l. dfi <37%-10% - n2.

Sm

To prove this claim we will use [2, Corollary 2]. Let (R" ® R™)®? be the 2-nd tensor
power of R” ® R™ . Let ey, ey € R be standard unit vectors and let w be the tensor

w = (6] ®e9)®? € (R" @ R™")®2,

The group SO(n) acts on (R™ ® R™)®? by the natural diagonal action, i.e., for g € SO(n)
and all x; € R,

g(T1 @ Q@ xs) = gT1 @ - R g4
and extend by linearity. We also define

v:=w—¢q, whereq= / gw do(g),
9€S0(n)

and we integrate with respect to the Haar measure & on SO(n). As in [3, Example 1.2,
we proceed as follows:
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(1) We identify the vector space of biforms from Q with the vector space V; of the
restrictions of linear functionals ¢ : (R" @ R™")®? — R to the orbit

SO(n)w = {(z @ y)**: ||zl = llyll = 1, y"= = 0}.

Note also that SO(n)(e; ® ey) = T.

(2) We identify the vector space of biforms from M with the vector space V4 of the
restrictions of linear functionals £ : (R” @ R")®? — R to B = SO(n)v.

(3) We introduce an inner product on V5 by defining

(1, 6s) = / o a00) - alg) 35,

This inner product also induces the dual inner product on the dual space V,* = V5
which we also denote by (-, ).

y [2, Corollary 2],

1
[flloe < (D)7 - 1l »
where Dj, = dimspan{gw®*: g € SO(n)}. Clearly,

2% +n— 1\
Dy < dimspan{gef®*: g € SO(n)} - dimspan{ge§**: g € SO(n )}:( +2Z ) ’

where the equality follows as in [2, p. 404]. If n is odd, we let 2kg = 9(n — 1). Otherwise
take 2ky = 9n to get
1 20 7. %
Do < ([ 970)
oo = (2k0>
Since 2k = 9¢, for some ¢y € N,

2
= 1045\ % 10 1\?
D’ < <[=-10
ko _(9€0> _(9 9)’

where we used [22, Lemma 2.2] in the last inequality.
To prove the Claim it remains to estimate the average L?*¢ norm, i.e.,

(4.4 A= [ W ai= [ ([ dU)ZiOdﬁ-

Notice that

(4.5) /S ) ( /T f2Ho da) % dji / N ( /g ol gv>2k°d8(9)> % d5(c),

where Sy is the unit sphere in V5" endowed with the rotation invariant probability measure
¢. Combining (4.4), (4.5) we obtain

%o 2
4 :/ (/ (c, 9v>2k0d8<9>> " do(c) < k” W) ok,
cESy/* g€S0O(n)

where we used [3, Lemma 3.5] for the inequality and [3, Remark p. 62] for the last equality.
This equality proves the Claim and establishes the lower bound in Theorem 4.5. [ |
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Proof of Theorem /.6. We write Sos = égsg) for brevity. We define the support function
Lg; of Sos by
L/S—E;:M—>R> Lgf);(f):m%<fag>

gESos
Let Sy be the unit sphere in U := R[x,y]1.1/(I NR[x,y]11) equipped with the L? norm,
and let || ||sq be the norm on Q defined by

_ 2
1o = mae (5,4
As in [22, §2.3.1], it follows that

1

Vol Sos | "™ ~
(vm ) < [ 1745
Ol B S

To prove the inequality of Theorem 4.6 it now suffices to prove the following claim.

~ 1
Claim: / Hf”sqdu§23.3-\/6-—.
St n

For f € Q let Hy be the quadratic form on U defined by

Hi(g) = (f,g°) forgel.
Note that
[fllsa = [[H |-
Here ||H||o stands for the supremum norm of H; on the unit sphere Sy.

Let @ be the SO(n)-invariant probability measure on Sy. The L* norm of H; for a
positive integer p is defined by

1y = ( / H§P<g>dﬁ>

As in [22, p. 3343-3344] (for ky = ko = 1), it follows that
5D 2D
/ 1 H | oodi < 23 / 7oy 0 < 2V3 - max [ 54 < 2756+,
Sm

where the last inequality follows by ||g?|l2 = ||¢]|3 and PrOposmon 4.10 below. To prove
the Claim it remains to establish

(4.6) , /i)a <2in

The dimensions D;;, D, are easily verified to be

Dy = dimR[x,y);; —1=n*—-1,

M\w
,_.

1)\ 2
Dy = dimR[x,yloe — dim(R[x,y]aoNI) — 1= (%) —n?*—1.

Observe that

2Dy 23(n? — 1) B 23(n? — 1)
Dy m2n+1)2—4n2—4 (n2-1D(n+12-3n2—1)+2n—6
23 23

< ————F< -,
<~ n?24+2n-—2 n?
n>2



20 I. KLEP, K. SIVIC, AND A. ZALAR

which proves (4.6). [

4.3. Reverse Holder inequality. We write I;; = I NR[x,y]11. A bilinear form ¢ €
R[%,y]1.1/11,1 is symmetric (resp. skew-symmetric) if it of the form g(x,y) = x” Ay +
I, ; for some symmetric (resp. skew-symmetric) matrix A € R™"*".

Proposition 4.10. For a bilinear biform g € R[x,y]11/111,

1

(47) ([a*a0)" = sl < Volgh, = V5 ( [ ¢ do—)%.

If g is symmetric, then we can take /3 instead of /6 in (4.7) above, while if g is skew-
symmetric, \/6 can be replaced by v/6. Moreover, the constants \/3 (resp. v/6) are asymp-
totically sharp as n — oo.

We point out an important fact about the inequality (4.7), which is crucial for Corollary
4.7. Namely, the constant C' in ||g|ls+ < C|g||2 can be chosen to be independent of the
number of variables n.

The proof of Proposition 4.10 will be done separately for the symmetric (Section 4.3.2)
and skew-symmetric case (Section 4.3.3), while the general case (Section 4.3.4) follows
from the fact that every bilinear form g can be written as a sum of a symmetric form g
and a skew-symmetric form g,, together with the observation that g, is perpendicular to g,
in the L? inner product. For the proof we first need to compute the values of the integrals
of monomials of bidegree (2,2) and some monomials of bidegree (4,4) with respect to
o, which is the content of Section 4.3.1. Using these computations, (4.7) becomes an
inequality in the coefficients of g, (resp. gs). We prove that this inequality holds.

Remark 4.11. In [16] a version of the Reverse Holder inequality with respect to the
Lebesgue measure on the unit sphere and polynomials of any degree is established. Lemma
2.9 of [22] extends this result to the product measure of two Lebesgue measures on unit
spheres. However, in the proof of Theorem 4.6 we cannot use this extension because the
measure o is not a product measure. Therefore we have to establish the Reverse Holder
inequality we need in our setting.

4.3.1. Computations needed for the proof of Proposition 4.10. Let us introduce new vari-
ables

z; =%y, t=1,...,n,
zi; = %Y, ,Jj=1...,n,
Vi =25+ 2, L,J=1,...,m
Wi =2y — 25, 4L,Jj=1,...,n.

Lemma 4.12. Let n > 3. The following identities hold:

1
Ilz/z?daz— fori=1,...,n.
T n(n +2)
I / d 1 7 1 forij=1 o
= | z;z; = — = — ori,j=1,...,n, @ ,
2T ? n—1" (n—1)n(n+ 2) J J
n+1 n+1
I, = 2 do = I = 7 =1,... ) ]
3 /TZ'Lj o n—1 1 (n—l)n(n—i—?) fOTl,] ’ , 1, Z#]?
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n 2
L= [ vido=2——1I = j=1,...,n, i#]
4 V'Lj o n—l 1 (n_1>(n+2) fOTZ,] ) 7n77'7£]7
_ 2 _Gant2. 2 . .
[5— Wide'—Qn_lfl—m fOTZ,]—l,...,n,Z#],

o
Il

z;jz do =0 if at least one of 1, j,k,l occurs an odd number of times,

5
|

vijvi do =0 if at least one of i, j,k, 1 occurs an odd number of times,

wijWwi do =0 if at least one of 1, j, k,l occurs an odd number of times,

9

1= s S s Dn g T

Jo = zgz-da——LJ—— J fori,7=1 n, i #j

2 T 1T (n=1nn+2)(n+4)(n+6) T e />
n? +4n + 15

3 Z,Z; A0 (n—1)n(n+1)(n+2)(n+4)(n+6)’ fO?”Z,] ) anal%‘%

J4I Z?ijk do = — n-s3

o
I
— 5 Y T 5 Y 5

(n—1)nn+1)(n+2)(n+4)(n+6)
fori,j,k,l=1,...,n, 1,7, k pairwise different,
3
(n—1)nn+1)(n+2)(n+4)(n+6)
form>4andi,j,k=1,...,n, 1,7k, pairwise different,
24
(n—1n(n+1)(n+2)
4
(n—1)n(n+1)(n+2)
form >4 and i, j,k, 1 pairwise different,

z,2;z,z; do =

o
I
ﬂ\

fori,j=1....n, 1 #j,

=
S
oF
Q
Il

S
I

5~
I
S

1
2 2 _ —
Wijwkl do = 6(]6 =

ZijZk1ZopZrs do = 0,

oo
|
ﬂ\»

if at least one of i,7,k,l,0,p,r,s occurs an odd number of times,

Wij Wi WopWrs do = 0,

S
I
ﬂ\

if at least one of 1,7, k,l,0,p,r,s occurs an odd number of times.

In the proof of Lemma 4.12 we will use the following technical lemma. Recall that
[51-1
nll = H (n — 2k) stands for the double factorial of n € N.
k=0
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Lemma 4.13. Fori € N and j € NU {0} the following equalities hold:
Jo sin™(¢) do (425 — 1)l

= Jo sin'(¢)d¢ (i = DN (i +25)!

B . Jocost(@)sin™(9) Ao (i+2j — Dl
e o sin’(¢) d¢ T G—= D G425+ 2

oo Jo os'(@)sn™(9) dg _,  (i+2j — 1)Ul
o Jo sin’(¢) do =D G2+

Proof. We have

foﬂ Sini+2j(¢) do _ B(z+2j+1’ ;) _ F(i+22j+1)
Josin'(@)do— B(5h3) - D(HHI(H5E)
(i+1+20-1)(i+1+2(j—2) - (i+1
(i+24+20-1)(i+2+2(j—2) - (i+2
(P25 =Dl

=DM+ 29

The proofs for B;5; and C; 5; are similar.

Aigj =

Now we are ready to prove Lemma 4.12.
Proof of Lemma 4.12. We write

?: (¢17¢27‘ . '7¢n—1)7 ¢17' . 'a¢n—2 S [Oaﬂ—]a ¢n—1 S [0,27T]
%: <w17w27' t 71/}n72)7 wla te 7wn73 € [077T]7 wan € [0727‘-]

Let
L 0 0 0
irn | 0 cos(¢) —sin(¢) 0 .
.(0) = 0 sin(¢) cos(¢) 0 o bsgsn—l
0 0 0 L.,

be a Givens rotation, where Ij stands for the k& x k identity matrix, and

Hy(9) = Ry (1) Ry 2 (dn2) -+ Rp(¢n),
HS(%) = Rz_l(¢n—2)RZ_2(¢n—3) o Ri(q/]l)

Then H,(¢) is (see, e.g., the formula for Ly(6) in [42, p. 3-4] or use induction on n)

cos(¢1) —sin(¢1) 0 e 0
sin(¢1) cos(¢2) cos(¢1) cos(d2) — sin(¢2) e 0
< H sin(¢;) ) cos(¢;) cos(¢1) < ﬁ sin(¢j)> cos(¢i) cos(¢2) (ﬁ sin(¢;) ) cos(¢;) e 0
j=2 j=3
n—2 n—2 n—2
( H in(qu)) cos(pn—1) cos(qﬁl)( H sin(qu)) cos(pn—1) cos(¢2)( H sin(qﬁj)) cos(pn—1) -+ —sin(dn-1)
j=1 Jj=3
(nl_f sin(¢;) ) sin(¢n—1) cos(¢1) ( H sin(¢; ) sin(¢n_1) cos(¢2)<7i_fsin(¢j)> sin(¢n—1) -+ cos(pp—1)

j=1 j=2 J=3
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and

10 =g ')

The set T'= V5, (R) (see Remark 4.3) can be parametrized by (see, e.g., [11, p. 48-49] or
[12, §2])

z1(9)

¢ )
()

)

Y1 (?7
Y2 (?7

SIS

(&, %) = (2(9). y(¢ ¥)) =

= the first two columns of H,ll(¢)HZ (¥),

where (¢, 1) € ([0,7]"72 x [0,27]) x ([0, 7]~ x [0, 2n]). We define

///////

d¢ = d¢1d¢2 - dgp, dy = deprdyy .. dyyo.

We have
/T g(z,y) do = / 9(2(8), (6, 0))Va(6, ¥) ddy,

where by [10, Theorem 2.1] (taking V = z(¢), G(V) = H}\(¢) without the first column
and Z = the first column of H,_,(¢)) and [7 1,

1 n—3 .
Valor ) = Hsm g § I
=l i=1

s s 2r n—2
STL = / .. / / Hsin<¢i)n717i d?,
0 0 0 i=1
—2
T T 27 n—3
sovm [ [ [T ao
0 0 0 i=1
-3

By the invariance of the integral with respect to the change of indices we can assume with-
out loss of generality that i, j, k, [ € {1,2,3,4} in all equalities of Lemma 4.12. Due to the
difference in parameterizations of some of the coordinates x;(¢), (¢, %), i = 1,2, 3,4, we
separate cases n > 6, n =5, n =4 and n = 3 in the rest of the proc_)f._

with

Case 1: n > 6. The coordinates x;(¢), yi(¢, 1), i = 1,2,3,4, are the following:

1(@) = cos(¢1),

2(¢) = sin(¢1) cos(¢2),

r3(¢) = sin(¢1) sin(¢z) cos(¢s),

z4(¢) = sin(¢1) sin(¢2) sin(¢s) cos(¢a),
)

= —sin(¢q) cos(¢1),
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Y2(8, ¥) = cos(¢1) cos(dz) cos(¢1) — sin(¢2) sin(y1) cos(¥s),
,@ = cos(¢1) sin(ga) cos(¢3) cos(¥1) + cos(¢2) cos(¢s) sin(i)1) cos(1z)
— sin(¢3) sin(¢1) sin(y2) cos(¢3),

+ cos(¢3) cos(¢q) sin(1h1) sin(1h2) cos(1hs) — sin(py) sin(e)y ) sin(ehg) sin(t)s) cos(y).

In the computations below we will need the following identities in the notation of Lemma
4.13:

n—=3"n-4H n-3
An-t2= =5 (n—2)1 n—2
A n—On-4  (n—3)(n—-1)
A (n —5)! nl! (n—2)n '
A — (n+3)!" (n—2)N _ (n—1)(n+1)(n+3)
" (n =3 (n+4)N nn+2)(n+4)
A= (n+51 -2 (n—1)(n+1)(n+3)(n+5)
" (n—3)!!' (n+6)! nn+2)(n+4)(n+6)
B _ =651 1
0T =6 (n—=3)1  n—3
(-5 (n—al 1
Bo-s0= (n—5(n—2)l n—2
n—3)! (n—4H! n—3
Broaa = nj5§!! n!!) T (n—2)n’
(n—)! (n—3)N 1
Buso = =i = ~ no1
B (=2 (n =31 n—2
R =) (n+ D) (n—1)(n+1)
B oot =3 (n—2)n
AT = (431 (n—1D(n+D(n+3)
B Cn=D'(n=2)1  n-—1
R =3 (n+2) n(n+2)
B . m+D =2 (n—1)(n+1)
AT (=) (DN n(n+2)(n+4)
By — m+3I! (=2  (n—1)(n+1)(n+3)
" n=3!"(n+6)!! nn+2)(n+4)(n+6)
(n—HN (n —3)N 3
C"—3°_3(n—4)u n+1)1 (n—1Dn+1)
0732:3('@—2)!! (n—B)!!: 3(n—2)
e n—4N n+3)!  (n—1)(n+1)(n+3)’
0_24:3(71—1—1)!! (n—2) _ 3n-1)rn+1) .
e n=3!(n+6)!! nn+2)(n+4)(n+6)

Now we are ready to prove the identities of Lemma 4.12. In the computations below we
include only terms with nonzero integrals, i.e., terms where in none of the factors cos(¢;)"
or cos(¢;)¥ the exponent k is odd.
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- / 2 do = / cos(1)? sin(1)? cos(1r)2Vi (6, 8) ddys
T n

a1 11

nn+2)n—1 n(n+2)

I, = / z129 do = —/ cos(¢1)? sin(¢y)? cos(da)? cos(¥1)* Vi (¢, ¥) dody
T

n

= Bn—2,2Bn—3,0 -

2 n—1 1 1
= —B, 22 (Bn—S,O) = _n(n T 2) (n _ 1)2 - (n — 1)n(n + 2)7

J, = / zt do = / cos(¢1)* sin(¢y)* cos(v1)*V,,(, ¥) dgdy
T Jn

B o 3(n—1)(n+1) 3 B 9
e n(n+2)(n+4)(n+6) m—1Dn+1) nn+2)(n+4)(n+6)
Jo = / 232y do = / *sin(¢1)* cos(¢2)? cos(1)*V;, (¢, ¥) dgdy
o 3n—Dn+1) 1 3

= - n72,4Bn73,OCn73,0 = -
B 9
G Dl T 2 A 1 6

Js = /T z2z2 do = / cos(¢1)* sin(¢r)* cos(d2)* cos(v1) Vi (¢, ¥) dody

n

nn+2)(n+4)(n+6)n—1(n—-1)(n+1)

/ cos(¢1)? sin(¢1)* cos(¢a)? sin(pz)? cos(11)? sin(¢);)? COS(@Z)Q)QVn(Q, ) dedy
C

2

n—2,4 (Cn 3 0) + Bn24 (Bn—3,2) B4

_ 3r-1n+1) 9 (n—1)(n+1) (n—2)2 1
nn+2)n+4)(n+6)(n—12n+1)? nn+2)(n+4)(n—12%n+1)2n—-2
n®+4n+15

(n—=1nn+1)(n+2)(n+4)(n+6)’
Jy = /7“212223 do = /cos(¢1) sin(¢)* cos(¢o)? sin(¢g)? cos(p3)? cos(1py )*-

Jn

V(9 v) dody — / cos(1)? sin(¢1)* cos(¢a)? sin(¢a)? cos(¢s)? cos(thy)? sin(¢1)*-

. COS(¢2>2Vn(?J ﬂ) d_?dy
9 2

= Cn—24Bn-32Bn-40Cn-30 — Bu24(Bn-32) (Bn-0)

3 —=1)(n+1) n—2 1 3
Can+2)(n+4)n+6)(n—1Dn+1)n—-2mn—-1)(n+1)
 (n=D(n+1) (n —2)? 1

n(n + 2)(n;— 4)(n—12n+1)%(n—2)>?
(n—1nn+1)(n+2)(n+4)(n+6)’
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Jy = / 21292324 do = —/ cos(¢pp)? sin(¢1)4 cos(pz)? sin(¢2)4 cos(¢3)2 sin(¢ps)?-
T Jn

: COS(¢4)2 COS(¢1)4Vn@7 ﬂ) d?dﬁ - / COS(¢1)2 Sin(¢1)4 COS(¢2)4 Sin(¢2)2‘
- cos()? sin(6s)? cos(61)? cos(1)? sin ()2 cos(z)?Va (0, ) dody
+ 2/ COS(¢1>2 sin(¢1)4 COS(¢2)2 sin(¢2)4 COS(¢3)2 sin(¢3)2 COS(¢4)2 COS(¢1)2 Sin(%)z‘

. COS(’QDQ)QVn(?, ) dedy) + /cos(¢1)2 sin(¢1)* cos(¢o)? sin(¢g)?-

- cos(¢3)” sin(¢3)? cos(¢a)” cos(¢h1)? sin(¢h1)? sin(1ha)? cos(v3)* Vo (¢, ) dedy
= - n72,4Bn73,4an4,23n75,00n73,0 - an2,4Cn73,Qan4,2Bn75,OBn73,ZBn74,O

2 2

+ 2Bn—274Bn—374Bn—4,2Bn—5,0Bn—3,QBn—4,O + Bn—2,4 (Bn—3,2) Bn—4,2 (Bn—5,0> An—472
. 3(n—=1mn+1) (n—2)n n—3 1 3
o+ 2)n+4)n+6)(n—1n+1)n+3)(n—2)nn—3(n—-1)(n+1)
_ (r=1(n+1) 3(n —2) n—3 1 n—2 1
nn+2)(n+4)(n—1)n+)(n+3)(n—2nn—3n—-1)(n+1)n—2
+2(n—1)(n+1) (n—2)n n—3 1 n—2 1

nn+2)(n+4)(n—1)n+1)n+3)(n—2nn—-3n—-1)(n+1)n—2
(n—1)(n+1) (n —2)? n—3 1 n-3
nn+2)(n+4)(n—12Mn+1)2(Mn—-2)n(n—3)?>n—2
3
T (n—Dnn+ Dn+2)(n+4)(n+6)

The fact I35 = Z—ﬂ[ 1 is a consequence of the following computation:

1= [ () () ar= [ (3#) ot [ (Se5) do=ntuenio -,

1=

Hence,

n+1
1—nl =
i n-+ 2

=n(n—1)I;,

which implies I3 = ((Ll) =ntlr.

n—1)n(n+2) n—1
Further,

[4 = /(zij + Zji)Q do = /(Zgj + 2Zijzji + Z?z) do = /(Zgj + QZZ‘Zj + Z?z) do
T T T

n—+1 1 2n 2
)]1: 11: )
n—1 (n—1)(n+2)

[5 = /(Z” — Zji)z do = /(Z?] — QZiiji + Z?l) do = /(212] — 221'2]' + 2]21) do
T T

T
n+1+ 1 )I_2(n+2) __ 2
(n—1)n

— oI+ I :2( _
(3+ 2) n—1 n—1

=2l — 1) = 2(

1 — 1 —

n—1 n-—1 n—1

Next we prove that fT z;jz do = 0 if at least one of 4, j, k,[ occurs an odd number of
times. Write g(x,y) := x;y;x,y; and let ¢; be the index among 4, j, k, [ which occurs an
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odd number of times. Since
g(xlv ey L1, T T4, Tig 41y o+ -5 Ty Y1y + v oy Yig—15 —Yig s Yig 41, - - - 7yn)
= _g('xla oy Ly =1, Ty s Tig 415 - - 5 Ty Y15 - - -5 Yiy—15 Yiy s Yir+15 - - 7yn)

for every (x,y) € T, it follows that Is = [z;jzw do = 0. Consequently, I; = Iy = 0,
since I; and Ig are both weighted sums of the integrals of the form I;.

Now we prove Jg = (n—l)n(TQLil)(n+2)‘ We have

/ Wi, do = /(leg —y1x0)* do
T T
= / (x1y5 — 4x7x2y1y5 + 6x7%5y7y; — 4x1%3y1y2 + Xy1) do
T

= 2/ x5y7 do — 8/ X1 X5y y2 do + 6/ z3z; do,
T T T

where we used that [.x{y; do = [ x3y] do and [, x}xoy1y3 do = [ x1x3yly> do due to
symmetry of the integral value in the indices of the variables x,y. We compute:

S = /Txé*y% do = / sin(¢1)° cos(@s)* cos(11) Vi (@, 1) dgdy
B 2 (n=1D)(n+1)(n+3)(n+5) )
= An2s(Gs) = T B+ D +6) (o= DR I
_ 9(n +3)(n +5)
(n—1nn+1)(n+2)(n+4)(n+6)’

J& = /T X1 0y0ys do = — / cos(¢1)? sin(¢y)® cos(2) ! cos(¥1) Vi (¢, 9) dgpdyp

_ » (n-Dn+1)n+3) )
= Bu26(Cos0) = O G D 1 6) = P 1)
9(n +3)

(n—n(n+1)(n+2)(n+4)(n +6)’
where in the second integral we included only the term with a nonzero integral. Hence,

24
(n—1Dnn+1)(n+2)

We have

Jo = 2J" =8I +6J5 =

_ 4
Next we prove J; = =D (D) -

/ wiowsy do = /(X1Y2 — y1%2)*(x3y4 — y3x4)* do
T T

= / (xTx3y5Y7 — 2x1%0X5y1Y2Y; + X3X3Y1Y: — 2XIX3XaY5YaYa + 4X1XoX3Xay1Y2Y3Ya
T

— 2X3X5X4Y1YaYa + X1X[Y5Y5 — 2KiXaX(1Y2¥; + X5X1y1Y5) do
= 4/ X5X3y1ys do — 8/ X5X3X4Yy3ys do -+ 4/ z1292324 do,
T T T

where we used that

2.2.2_2 _ 2.2.2 2 _ 2.2.2 2 _ 2.2.2_2
/X1X3Y2Y4 dU—/X2X3Y1Y4 dU—/X1X4Y2Y3 dU—/X2X4Y1Y3 do,
T T T T
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/X1X2X§Y1YQY?1 do = / X%X3X4ng3Y4 do = / ng3X4y%y3y4 do = / X1X2Xiy1y2y§ do
T T T T

due to the symmetry of the integral value in the indices of the variables x, y. We compute:
1 = / xxiyiy; do = / ?sin(1)° cos(a)” sin(62)" cos(@s)? sin(9)*
COS(¢4) 005(1/11) @ @ dedy + /Sln(¢1) COS(¢2>4 Sin(¢2)2 005(9253)2 Sin(¢3)2'

- cos(¢4)? cos(t1)? sin (1) cos(¢)2)” Vn(?v%) d?dﬁ"‘/Siﬂ((?l)ﬁ cos(¢2)” sin(¢z)*-

n

-sin(¢3)* cos(¢q)? cos(¢1)? sin(1h1)? sin(1he)? cos(13)* Vi (¢, ¥) dody
= Bn—Q,GBn—3,4Bn—4,2Bn—5,OCn—3,O + An—2,6Cn—3,2Bn—4,ZBn—5,OBn—3,2Bn—4,O

2 2

+ A2 (anz,z) An_a4 (ans),o) An_a2
_ (n=1)(n+1)(n+3) (n—2)n n—3 1 3
S nn+2)(n+4)n+6)(n—1)n+1)(n+3)(n—2nn—-3(n—1)(n+1)
(n—1)(n+1)(n+3) 3(n —2) n—3 1 n—2 1

nn+2)(n+4) m—-1n+Hn+3)(n—2)nn—-3n—-1)(n+1)n—2
(n—1)(n+1)(n+3) (n — 2)? (n—=3)(n-1 1 n-3
nn+2)(n+4) (n—-12n+12 nm-2)n (n—3)2n—-2
B (n+3)(n+5)
S (n—=Dnn+1)n+2)(n+4)(n+6)

J§2) :/x2X3X4y1y3y4 do = /cos gzﬁl sin(¢) Cos(gbg)2 sin(¢2)4-
T —_—

- cos(¢3)” sin(¢3)” cos(¢a)” cos(¥1) Vi (¢, ¥) déder/Sin(¢1)6COS(¢2)4sin(¢>z)2'

n

- cos(¢3)” sin(¢3)” cos(¢a)” cos(¥1)” sin(vr)* cos(v2)*Va(9, ) dgdy
— / sin(¢1)° cos(¢o)? sin(¢o)? cos(p3)? sin(eps)? cos(¢4)? cos(1)? sin(ahy )?

-sin(vy)? cos(wg)zvn@, ) dedy
3 3
(n—1n(n+1)(n+2)(n+4)(n+6) * (n—1n%(n+1)(n+2)(n+4)
— An-26(Bu-s2) Bu-s2Ba-s50An-12Bn-s50
B 3 .\ 3
C(n=Dnn+1)n+2)(n+4)(n+6)  (n—1Dn2(n+1)(n+2)(n+4)
(=D +Hn+3)  (n-2) n—-3 1 n—-3 1
nn+2)(n+4) nm-1>2*n+1)2Mn—-2)nn—3n—2n—3
_ n+3
(n—1nn+1)(n+2)(n+4)(n+6)’

where we included only the terms with nonzero integrals in the computations. Hence,

4

ORI _
Jr = 4J =8I 4 4J; CESVTCES T
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The argument for Jg = Jy = 0 is the same as for Is = I; = I = 0 above.

Case 2: n = 5. Note that the parameterizations of z;(¢), i = 1,2,3,4, and y;(¢, ),
1 =1,2,3, are the same as in the case n > 6, while

ya(@, 1) = cos(¢1) sin(¢z) sin(¢s) cos(¢a) cos(y1) + cos(z) sin(¢s) cos(¢a) sin(y) cos(ihz)
+ cos(¢3) cos(¢4) sin(thy) sin(thy) cos(ths) — sin(¢y) sin(t)q) sin(w)q) sin(w)s).

So the computations of the integrals of monomials from Lemma 4.12 containing at most 3
different indices remain the same as in the case n > 6. The remaining formulas containing
monomials with possibly more than three different indices are Ig, I7, Is, Js5, J7, Jg, Jg. The
arguments for Iy = I; = I3 = Jg = Jy = 0 are the same as in the case n > 6. The
argument for J; following the same formula as in the case n > 6 also when applied to
n =5 is the following computation:

5
():/(zl+22+23+z4+z5)4da:Z/Z?da—l—ZlZ/zg’zjda—l—GZ/zfz?da
T — Jr T T

i#] 1<y

+ 12 Z zfzjzk do + 24 Z z,;z2;z,z; do

i,k pairw. Y T i<j<k<t’T

diff.j<k

) ) 4 )
:5J1+4-2<2)J2—|—6(2)J3+12-5(2>J4+24(4)J5.

Using Jy, Jo, J3, J4 as stated in Lemma 4.12 for n = 5, we get J; =
accordance with the formula in Lemma 4.12 for n = 5.

ﬁ, which is also in
It remains to do direct computations for the value of J;. In the notation of case n > 6
(1) (2),
we need to compute J; ' and J;7:

7 = A 2yly2 do = / cos(61)? sin(61)° cos(e)? sin(da)* cos(s)? sin(s)*

45

- cos(¢a)? cos(¢1) Vs (¢, ) dgdy + / sin(¢1)°® cos(dz) sin(2)? cos(¢3)? sin(¢z)*
Js

- cos(¢4)? cos(th1)? sin(z )? cos(w2)2v5@, ) dedy) + /sin(¢1)6 cos(¢a)? sin(gg)*

5

-sin(¢3)* cos(¢4)? cos(¢1)? sin(ihy) sin(yhs)? cos(v3)*Vs (¢, ¥) dgdy

J7(2) = / X§X3X4yfy3y4 do = /cos(¢1)2 sin(¢1)6 cos(q§2)2 sin(q§2)4 cos.(¢3)2 sin(¢s3)?-
T

J5

- cos(4)” cos(¢1) Vs (¢, ¢) dgdy + /Sin(¢1)6 cos(¢z)" sin(2)* cos(¢3)” sin(¢3)*

J5

- cos(¢a)? cos(tpr)? sin(¢)? COS(%)Q%@, %) dedy — /Siﬂ(¢1)6 cos(¢z)? sin(¢g)*-
Js

: COS(¢3)2 sin(¢3)2 COS<¢4)2 COS(¢1)2 Sin(%)Q sin(%)z COS(%)ZVB(?; E) dedy.



30 I. KLEP, K. SIVIC, AND A. ZALAR

In all of the formulas above the difference from the case n > 6 is that integration intervals
for ¢4 and 13 are [0, 27] instead of [0, 7]. However, since

fo% cos(¢)? sin(¢)% d¢ B foﬂ cos(¢)? sin(¢)% d¢
Jim1dg Jo 1d¢
we can replace both intervals [0, 2] with [0,7]. Since the integrands are precisely as in

the case n > 6 with n = 5, the formulas for J; from the case n > 6 hold also when applied
ton =25.

(4.8) for all 4,7 € NU {0},

Case 3: n = 4. Note that the parameterizations of ;(¢), i = 1,2, 3, and y;(¢,¢), i =
are the same as in the case n > 6, while
24(¢) = sin(¢1) sin(¢2) sin(¢z),
Y3(@, Y1, 12) = cos(¢1) sin(dz) cos(¢s) cos(v1) + cos(¢2) cos(@s) sin(vr) cos(ibs)
— sin(gs) sin(ih)) sin(s),
Ya(P, 1, 102) = cos(¢1) sin(pz) sin(¢s) cos(v1) + cos(Pz) sin(¢s) sin(¢)1) cos(¢))
+ cos(¢3) sin(e)y ) sin(ehy).

So the computations of the integrals of monomials from Lemma 4.12 containing at most 2
different indices remain the same as in the case n > 6. The remaining formulas containing
monomials with possibly more than two different indices are Ig, I7, Is, Jy, J5, J7, J3, Jg. The
arguments for Is = I; = Iy = Jy = Jg = 0 are the same as in the case n > 6. The argument
for J4 is direct computation. We have:

LZ%Z223dU = /COS(¢1)4 sin(¢1)* cos(¢2)? sin(¢a)? cos(¢s)? cos(¢1)Va(e, ¢) dgdy
Ja

- / cos(chn)? sin(chn)" cos(da)? sin(da)? cos(s)? cos(th1)? sin(ihn)? cos(12)?Va(, ) dddyp

4
By (4.8), the integration intervals for ¢3 and 15 can be replaced by [0, 7] instead of [0, 27].
Since the integral is precisely as in the case n > 6 with n = 4, the formula for J; from
the case n > 6 holds also when applied to n = 4. The argument for J5 following the same
formula as in the case n > 6 for n = 4 is the following computation:

O—/(zl—{—22+23+24 da—Z/ 4da+42/zzjda+62/zz

1#£j 1<J
+ 12 Z / z;z;z;, do + 24/ 21292324 do

,J,k pairw. T
diff.,j<k
4 4 3
=4J;+4-2 5 Jy 4+ 6 5 J3+12-4 5 Jy + 24J5.
Using Ji, Jo, J3, Jy4 as stated in Lemma 4.12 for n = 4, we get J5 = 9600, which is also as

stated in Lemma 4.12 for n = 4.
It remains to do direct computations for the value of J;. In the notation of case n > 6
(1) ()
we need to compute J; ' and J;

J7(1) /Txgxiyfyg do = /4cos(¢1)2 sin(¢1)° cos(¢)? sin(¢2)4 cos(¢3)? sin(¢s)*
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. cos(z/zﬂ"‘%(@, Y) dedy + /sin(¢1)6 cos(¢)* sin(¢o)? cos(¢3)? sin(¢pz)?-

J4

- cos(n)? sin(yn)? cos(1)*Va(, ) ddy + / sin(n)° cos(da)? sin(dn)*

4

 sin(gy)" cos(t)? sin(y)? sin(16:)*Va(6, 1) dgdss
T = /TX§X3X4Y%Y3Y4 do = /008(051)2 sin(¢1)° cos(¢2)? sin(¢a)* cos(¢s)? sin(¢s)*-

J4

. cos(w1)4‘/4(?, ) dedy + /sin(¢1)6 cos(¢)* sin(¢o)? cos(¢3)? sin(¢psz)?-

J4

- cos(¢1)? sin(n)* cos(v2)*Va(¢, ¥) dgdy — /Sin(¢1)6COS(¢2)281H(¢2)2-
4

- cos(¢3)” sin(s)” cos(v1)” sin(y1)” sin(v2)*Va(, ¥) dody.

By (4.8), the integration intervals for ¢3 and 15 can be replaced by [0, 7] instead of [0, 27].
The difference in the integrands in comparison to the case n > 6 is that every summand
lacks the cos(¢4)? term, while some summands lack the cos(t3)? term. However, looking
at the computation for n > 6 both correspond to the term B,,_5¢ = ﬁ For n = 4
this term is equal to 1, so the final formula for .J; is the same as in the case n > 6 when
applied to n = 4.

Case 4: n = 3. Note that the parameterizations of x1(¢), x2(¢) and y1(¢, 1) are the
same as in the case n > 6, while

23(h1, ¢2) = sin(¢1) sin(¢a),
Y2(@1, Pa,91) = cos(d1) cos(ga) cos(thy) — sin(pz) sin(th1),
y3(P1, P2, Y1) = cos(¢y) sin(¢pz) cos(1h1) + cos(ps) sin(1)y).

So the computations of the integrals of monomials from Lemma 4.12 containing one
different index remain the same as in the case n > 6, i.e., I; and J; hold for n = 3. The
arguments for Is = I; = Iy = Jg = Jy = 0 are the same as in the case n > 6. Assuming
I, = —%Il, the arguments proving formulas I3, I, I5 are the same as in the case n > 6. It
remains to establish the formulas for Is, J5, Js, Jy, Jg by direct computations:

12 = / Z1Z9 do = —/COS(¢1>2 sin(¢1)2 COS(¢2)2 COS(l/)1>2‘/3(gZ51) d¢1d¢2d1/)1,
T

3

Jy = / 232y do = — / cos(¢1)* sin(¢y)* cos(¢a)? cos(¢1)*Va(¢1) dordpediy;
J3

+ /COS(¢1)2 Sin(¢1>4 COS(%)Q Sin(¢2)2 COS(@/M)Q Sin(¢l)2%(¢l) dg1dgadyy
3

COS(¢1)4 sin(¢1)4 COS(%)Q Sin(¢2)2 COS(1/11)4'

Jy = 2%2223da =

3
lo~—

- V3(¢1) deprdgpadepy — /cos(¢1)2 sin(¢1)* cos(¢o)? sin(¢a)? cos(¢1)? sin(¢y )?-

43
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- Va(¢1) dordeadihy
I = / Xyt do = / sin(¢1)® cos(d2)? cos()Va(¢1) dgrdadipy
T J3

Jé2) = / X1X§Y?Y2 do = —/COS(<Z51)2 Sin(¢1)6 COS(¢2)4 COS(¢1)4V3(¢1) dg1dgedipy,
T

3
where we included only terms with nonzero integrals in the computations above. By
(4.8), the integration intervals for ¢o and ¢, can be replaced by [0, 7| instead of [0, 27].
The integrands of I, Js, Jél), JéQ) are the same as in the case n > 6 and hence also the
corresponding formulas when applied to n = 3. The difference in the integrands of J3
and J; in comparison with the case n > 6 is that some summands lack at least one of the
terms cos(¢3)? or cos(12)?. Looking at the computation for n > 6 these terms correspond
to the factor B, _40 = ﬁ For n = 3 this term is equal to 1. So the final formulas for J3
and Jy are the same as in the case n > 6 when applied to n = 3. Hence, also the formula
for Js is the same when applied to n = 3 by the argument as in the case n > 6. [

4.3.2. Proof of Proposition /.10 for a symmetric bilinear form g. By the action g(x,y) =
g(Ux,Uy), U € SO(n), we can assume without loss of generality that g is of the form

g(z) =diz1 +dozo + ... + dpz,, d; €R.
Raising both sides of (4.7) to the power of 4, we have to prove that

(4.9) /T (Z dizi)4 do <9 /T (Z diz,)? do

We can assume that ||g||s = 1:

(4.10) (Z ) L =1,

where we used that I, = ——=1; (see Lemma 4.12). Squaring (4.10) we also have

Z 4——Z4d3d +2<1+ >Zd2d2

i#] i<j

411 4 2 _ 1
(4.11) _n_1< n—l) > dddk—i— ) > 24didjdkdl—l—12.

1,5,k 1<j<k<l
pairwise
different,

i<k

Using Jo = ——=J; (see Lemma 4.12), (4.10) and (4.11) in (4.9), the latter is equivalent
to:

d3d,
0<9— (de 21;3_1 > i —6) didiJs—12 > diddy s

7 i<j 1,5,k
pairwise
different,

i<k

— > 24d;d;dyd, -

i<j<k<l

0, ifn=3
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4
_9——+§d2d2<—6J3+2J1+mJ1>

+ zjﬁwﬁ(—mh—nffh+mfnf@

,L"Vj?]{/:
pairwise
different,

i<k

+ Y 24did;dyd; -
1<j<k<l
J 12
=9- S+
I7 (n—U%m+4x-+®m+®

J5+ Jl, 1fn24
0, ifn=3

(=3 (Y dn-2-2 Y @dd)+12 Y ddiddr).

1<j 1,7,k 1<j<k<l
pairwise
different,
i<k
Since
Ji In?(n + 2)? In(n +2) <9
—_ )

2 nn+2)(n+4)(n+6) (n+4)(n+6)
it suffices to prove that

(4.12) (}:ffn—z-n z:d%@)+u 3" didydid; > 0.

1<j 1,9,k 1<j<k<l
pairwise
different,
i<k
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We will use induction on n to verify (4.12), starting with n = 3. Clearly, for n = 3 both
terms are 0 and we have equality in (4.12). Let us assume (4.12) holds for some n and prove

it for n+1. Note that in all inequalities (4.9)—(4.12), the validity for one tuple (dj, ..

-y dn)

implies the validity for every tuple (d; + a,...,d, + a), where a € R. The reason for this
is that a(z; +...+2z,) =0 on T and hence fT (di +a)z) do = [(3, diz)! do for
every [ € N. Usmg this and the symmetry on mdlces of coefficients we can assume that

(4.13) dy>dy> ... >dy > dyyy = 0.
Using (4.13) in (4.12) it remains to prove

(4.14) n—2(§:dm2 1) -2 }:(ﬁ@@)+12 S didgdd >0

i<j<n 1,7,k<n 1<j<k<l<n
pairwise
different,
i<k

We can rewrite (4.14) into

—3)(Y dBm-2 -2 Y Bdd)+12 Y ddidd

i<j<n i,5,k<n 1<j<k<l<n
pairwise
different,
i<k
(4.15)
(Ejfﬁ 2) — Ejﬁ@@)zo

i<j<n i,7,k<n
pairwise
different,

j<k
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In (4.15), the first summand is nonnegative by the induction hypothesis, the second
summand by (4.13) and the third summand by Muirhead’s inequality [27]. Namely,
let (s1,82,83,...,8,) = (2,2,0,...,0) and (ty,t9,t3,t4,...,t,) = (2,1,1,0,...,0). Note
S s =S tiand Y8 s, > S tifork=1,...,n—1. Sinced; > 0fori=1,...,n,
[27] implies

(4.16) Z dio(l)d;d@) . ”d;io'(n) > Z dtla(l)d;o'@) . ”d;a(n)’
O'ESn O—GSH
where S, stands for the symmetric group on {1,2,...,n}. Note (4.16) is equivalent to

S 2An =2 didi > Y 2n—3) - did;dy,
i<j<n ijk<n
pairwise
different,
j<k
which implies the nonnegativity of the third summand in (4.15).
It remains to prove the moreover part of Proposition 4.10 for symmetric bilinear forms,

i.e., the constant v/3 in the inequality ||g|ls < v/3||g]|2 is asymptotically sharp as n — oo.

For g(z) = =2 note
lglle = ¢ 2% = nin +2) Igll2-
2\ (n+4)(n+6)

As n — 0o, we deduce that || g|ls — v/3]|g|2- .

4.3.3. Proof of Proposition /.10 for a skew-symmetric bilinear form ¢g. By the action
g(x,y) = g(U'x,U™y), U € SO(n), we can assume without loss of generality (see [21,
Corollary 2.5.11] that g is of the form

g(W) = arpwiz + agqwsg + ...+ Qg|2)—12(2 W22 |-12(2], Gii+1 € R,

Raising both sides of (4.7) to the power of 4, we have to prove that

2
(4-17) / Z A2;—1,2iW2i— 127, do <6 / Z A2i—1,2{W2i— 121) do

1<i<| 2| 1<i<| 2]

We can assume that ||g||2 = 1:

/ E A2;-1,2i425-1,2jW2i—1,2;W2j— 12]> do

1<4,5<] 5]
(4.18) :< Z a2i—1,2i>15+2< Z a2z‘—1,2z‘a2j—1,2j>fs
1<i<] 2] 1<ici<| 2],
= ( Z agi71,2i)l5 =1,
1<i<(3)

where we used Lemma 4.12. Squaring (4.18) we also have

1
(4.19) Z Uiy i + 2 Z U310 1,0) = I
5

1<i<| 2| 1<i<j<|2]
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Computing the left-hand side of (4.17) using Lemma 4.12 we get

/ E A2;-1,2i425 1,272k —1,2kA2]—1,21W2;—1,2iW25j 1,2 W2k—1,2kW2[ — 12l> do
1<i4,5,k, 1< 5 ]

(4.20) = Z a2i71,2i‘]6+6 Z a%iq,%a%jflgr]? ’

1<i<| 3] 1<i<<[ 3]

_ 2 2
= ( § an 1,2i T § a’2i71,2ia2j71,2j)']6'

1<i<| 2] 1<i<j<| 2]

In the computation above we used the fact that all integrals
/sz‘—1,2z'W2j—1,2jW2k—1,2kW2l—1,2l dU,
T

where at least one index appears an odd number of times, are equal to 0. Using (4.18),
(4.19) and (4.20) in (4.17), the latter is equivalent to:

Js
(4.21) 0<6— I_ + agi—1,2ia§j—1,2j<]6-
1<i<i<| 5]
Since
Js 24(n — 1)n? _ 6(n—1)n

I 4n—Dnn+1D)n+2) m+D)n+2) ~
the inequality (4.21) clearly holds.
It remains to prove the moreover part of Proposition 4.10 for skew-symmetric bilinear
forms, i.e., the constant v/6 in the inequality ||g|ls < v/6||g|2 is asymptotically sharp as
n — oo. For g(w) = \/Lrswlg, note

ol = /55 = ¢ g lall

As n — oo, we deduce that ||g|ls — v/6]|g]|2. "

4.3.4. Proof of Proposition /.10 for a general bilinear form g. Let g(x,y) =xT Ay +1,; €

R[x,y]11/111 be a bilinear form, where A € R™*". We can write
xT(A+ AT xI(A— AT

ﬂxw:<_L7r_&+hQ+(_L7r_&

+II,1)7

gs(%,y) ga(x,y)

where g4(x,y) and g,(x,y) are symmetric and skew-symmetric bilinear forms, respectively.
We can write g, and g, as follows:

ZCLZZZ -+ Z bzg Z;j + Zﬂ) a; € ]R, bij € R,

1<z<j<n
-~
Js,1 Js,2
ga(z) = > cij(zij—z), o €R

1<i<j<n

Claim. (g, ¢a) = [ gsga do = 0.



36 I. KLEP, K. SIVIC, AND A. ZALAR
Proof of Claim. Since gs = gs1 + ¢s,2, it suffices to prove that

<gS,17.ga> - <gs727ga> — 0

The fact that (gs1,9.) = 0 follows by observing that (gs1, g.) is a weighted sum of inner
products of the form

(zi, (zjk — 2j)) = / z;izjpdo — / z;iZ;do.
T T
But the values of both terms are equal to 0 by Lemma 4.12, since at least one of the
indices i, j, k occurs an odd number of times.
The fact that (gs2,g,.) = 0 follows by noticing that (gs 2, gs) is a weighted sum of inner

products of the form

(zij + 2ji), (zo — zik)) = (24, Zr1) — (Zij> 2ie) + (24, 2l1) — (254, Zuk)

:/zijzkl da—/zijzlk d0+/zjizkl da—/zjizlk do.
T T T T

If (4, 5) # (k,1), then in z;;zy, zij2ik, ZjiZk, ZjiZi at least one of the indices ¢, j, k, [ occurs
an odd number of times and hence the corresponding integral is equal to 0 by Lemma

412 If (Z,]) = (k‘, l), then Zijzkl = Z?j, Zijzlk = Zl'iji, zjizkl = Zjizij> zjizlk = Zj2'i7 and
hence
((zij + 24i), (zij — 2j3)) = / z?j do — / z?i do = 0.
T T
This proves the Claim. U
We have

lglla = 1lgs + galla < lgslla + galla < V3llgsllz + V6l gall:

< V3(llgsll2 + llgall2) < V6lglla,

where in the first inequality we used the triangle inequality for || - ||4, in the second the
statement of Proposition 4.10 for symmetric (resp. skew-symmetric) bilinear forms, in the
third v/6 < +/3 and in the last ||gs/l2 + [|gall2 < v2||g]|2- Indeed, by the Claim

(4.22) lgll2 = \/119all3 + llgs]I3-

Further,
2
(4.23) (gallz + llgsll2)™ = Nlgalls + 2l gallllgsll + llgsl3 < 2(llgall3 + llgsll3)-
where we used inequality between the arithmetic mean and the geometric mean. Using
(4.22) in (4.23) gives ||gsll2 + [|gall2 < V2|g]2- o

5. ALGORITHMS AND EXAMPLES

Each biquadratic form f € R[x, y]2 o that is modulo I a nonnegative polynomial but not
a sum of squares yields an example of a “proper” cross-positive map A : M, (R) — M, (R),
cf. Proposition 2.6. In this section we specialize the Blekherman-Smith-Velasco procedure
([6, Procedure 3.3]; see also [22] for a specialization in the context of positive linear maps)
to produce many such examples from random input data. Throughout this section we fix
n > 2.
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Observe that biquadratic forms are in bijective correspondence with quadratic forms
on the Segre variety (cf. [6, Example 5.6] or [41, Lemma 3.13]). Let P"~! denote the
complex (n — 1)-dimensional projective space and let o, : P! x P! — P**~1 ([, :

crmpl v oo yn]) & [Ty s iy oo TYn ... ¢ TnYs] be the Segre em-
bedding. Its image o,(P""! x P"!) = Vi(I,) is the complex zero locus of the ideal
I, € R[z] := R[z11,212,- -+ Z1n,- - -, Znn) generated by all 2 x 2 minors of the matrix

(2ij); ;- The complexification I® C C[z] of the ideal I, is radical [18, p. 98] and thus
consists of all polynomials vanishing on o,(P"~! x P*1). Tt is also well known that

o, (P71 x P"1) is smooth [18, p. 184-185] and of degree (*~7) [18, p. 233].
Let J C R[z] be the ideal generated by > | z;;, let J, = I, + J, and let J© and JT be

complexifications of J and J, in C[z].
Lemma 5.1. The ideal J is radical.

Proof. We first show that JC/IC is a radical ideal in C[z]/IS. Let f € Clz]/IS satisfy
f? e JE/IE. Since IF is radical ideal and Vi(1I,,) is the image of the Segre embedding,
the Segre embedding induces an injective homomorphism between coordinate rings 67 :
Clz]/IS — Clx,y] sending z;; + IS — x;y;. Clearly, 6#(JS/IS) C IC, so (6#(}”))2 =
o7 (f%) € IC. Since I is a prime ideal in C[x,y], it follows that 67 (f) € I®. Let
(5.1) GH (=9 xvi
i=1

for some g € Clx,y]. Since 6#(f) lies in the image of 67, each of its monomials is of
bidegree (d, d) for some d (which depends on the monomial). Comparing the monomials in
(5.1) we see that the same holds for g, i.e., g € im7#. Let h € C[z]/IS satisfy 67 (h) = g.
Then (5.1) implies 67 (f —h- (>0 zi+ IS)) = 0, and injectivity of 67 implies that
f=h-,zu+I5) € JE/IE. So, JE/IT is radical.

Finally, C[z]/IF is a domain, and JC/IF is a radical ideal. It follows that

(Clzl/1y) / (J5 /1) = Cll/ T
is reduced (without nilpotents), hence JC is a radical ideal in C|[z]. |

Since JE is the homogeneous ideal of all polynomials that vanish on V¢(J,), the quotient
ring C[z]/JE is the coordinate ring C[V¢(J,,)] of the variety Vi(J,,). The proof of the above
lemma shows that (6#)_1 (I€) C JE/IC, and the converse inclusion is obvious, therefore
there is an induced injective homomorphism o7 : C[z]/JE — Clx, y]/I satisfying o (z;;+
JE) = x;y; + I€ for 1 < i,j < n. The restriction of this homomorphism to the real
quadratic forms is then a (linear) bijective correspondence between quadratic forms from
R(z]/J, and biforms from R|x, y]22 modulo /.

Recall from Lemma 2.4 that a biform f € R[x, y]s2 is a sum of squares modulo [ if and
only if it is a sum of squares of biforms from R[x, y]; ; modulo I.

Lemma 5.2. A biform f € R[x,y|a2 of bidegree (2,2) is a sum of squares modulo I if
and only if the quadratic form o# ' (f) € R[z]/J, is a sum of squares.

Proof. To prove the implication (=) let

Jo n
(5.2) F=)_F+g9 > %y
j=1 i=1
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where jo € N, each f; € R[x,y]1; and ¢ € R[x,y]11. Note that all f; and g are in the
image of o7. Hence,

ZU fi)”+ o7 1(9)‘2%‘

is a sum of squares in R[z]/.J,,.
It remains to prove the implication (<). Since f is in the image of o7, it follows from

J1

j=1

where j; € N and [h;] is the equivalence class of h; € R[z] in R[z]/J,, that

J1
f=Y af(h])?
j=1
is a sum of squares in R[x,y|/I which proves (<). |

Proposition 5.3. The variety Ve(J,) is smooth and is a nondegenerate subvariety of
Ve Q00 zi), dimVie(J,) = 2n — 3, its codimension in the hyperplane Ve (31| zii) is
(n —1)2, and the degree of Ve(J,) is (7).

1

Proof. Note that Vi(J,,) is (the projectivization of) the variety of all n x n matrices of
rank 1 and trace 0. Suppose it is contained in a hyperplane of V(> 7", z;). Then there
exists a nonzero traceless matrix M such that tr(zy?’ M) = y? Mz = 0 for all z,y € C"
satisfying y'z = 0. Taking z = €;,y = ¢; for arbitrary distinct ¢ and j we get that M
is diagonal. Furthermore, taking x = e, + ¢;,y = ¢; — ¢; for distinct ¢ and j, we get that
M is a scalar matrix. Since tr M = 0, it follows that M = 0, which is a contradiction.
Therefore V(J,,) is nondegenerate.

Next, we compute the Hilbert polynomial for Vi(.J,,). We follow the proof of the anal-
ogous result for the Segre variety in [18, p. 234]. The space of polynomials of degree d
in C[z]/JS is isomorphic, via the restriction of the homomorphism ¢, to the space of
polynomials of bidegree (d, d) in Clx,y]/IC. Its dimension is therefore

(n—l—d—1>2_ (n+d—2)2: <(d+1)('"(n+d_2))2(n—1)(n+2d—1)-

n—1 n—1 n—1)!

This is a polynomial in d with the leading term (( 1), >d?" =3, therefore dim V¢ (J,) = 2n—3

and deg Vi (J,) = % = (2:_12). As Ve(3o, z;) is a hyperplane in P” *~1 the
result on codimension also follows.

It remains to prove smoothness. Note that the group GL, acts on the variety Vi(J,)
of rank 1 traceless matrices by conjugation. Using the Jordan normal form we see that
the action is transitive, so it suffices to prove that ejel is a smooth point of V¢(J,). To
show this we use the Jacobian criterion. Let Jac(ejel) be the Jacobian matrix for Vi(J,,)
at ejel. The generators of the ideal Jf are z;;zy — zyZk; where ¢ # k and j # [, and
> v 1 zi. The gradient of z;;zy — zyzg; in erel is zero if i # 1 and k # 1 or if j # 2
and [ # 2. On the other hand, the gradient of Zlgzkl — Z1Z}o in erel is eke for £ # 1
and | # 2, and the gradient of Y1 1 z; is Y ., e;e]. Clearly, Y  eel € C™ is not a
linear combination of exe] with k # 1 and [ # 2, so rank Jac(ejel) = (n — 1)> + 1 and
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dim ker Jac(ejel) = 2n — 2. It follows that the (projective) tangent space to Ve(J,) at
erel is (2n — 3)-dimensional, which shows that e;el is smooth. |

Corollary 5.4. Forn > 3 the variety Vi (J,,) is not of minimal degree, i.e., deg Vi (J,) >
1 + codim Vi (J,).

We write

Pos(V(J,)) = {f€R[z]/J.: f(z) >0 forall ze V(J,)},

Sos(V(J,)) = {f eR[z]/J,: [ = fo for some £ € N and f; € ]R[z]/Jn} ,

i=1

for the cone of nonnegative polynomials and the cone of sums of squares from R|z]/J,,
respectively.

For n > 3, [6, Procedure 3.3] yields an explicit construction of nonnegative quadratic
forms from R|z]/J, that are not sums of squares forms starting from random input data.
We now turn this procedure, specialized to our context, into a probabilistic (Las Vegas)
algorithm.

Algorithm 5.5. Let n > 3, d = 2n — 3 = dimV(J,,), and e = (n — 1)? = codim V' (J,,).
To obtain a quadratic form in Pos(V(J,,)) \ Sos(V(J,,)) proceed as follows:

Step 1 Construction of linear forms hy, ..., hg.
Step 1.1 Choose e+1 random pairwise orthogonal (¥ € R™ and ¥ € R™ and calculate
their Kronecker tensor products z(® = z() @ y® ¢ R™.
Step 1.2 Choose d random vectors vy, . .. vy € R" from the kernel of the matrix

(:0 .. D)

9

and form the linear forms
hj(z) =v;-z€R[z] forj=1,...,d.

If the number of points in the intersection ker((vy ... vd)*) AV (J,) is not

equal to deg(Ve(J,)) = (277__12) or if the points in the intersection are not in

linearly general position, then repeat Step 1.1.
Step 1.3 Choose a random vector vy from the kernel of the matrix

(z(l) e z(e))* .
(Note z(¢*1) is omitted.) The corresponding linear form hy is
ho(z) = v; - z € R[z].
If hg intersects hq, . . ., hq in more than e points on V'(.J,,), then repeat Step 1.3.

Let a be the ideal in R[z]/J,, generated by hg, hy, ..., hq.

Step 2 Construction of a quadratic form f € (R[z]/J,) \ a®.
Step 2.1 Let g1(2),. .. ,g(n)z(z) be the generators of the ideal I,,, i.e., the 2 x 2 minors
2
zi2zi — zyzk; for 1 <1 <k <n,1 <j<l<n Setgy=D> ., z4 For

each i = 1,...,e compute a basis {w@, o ,wc(li)rl} C R™ of the kernel of the
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matrix '
Vgo (Z(z) )*

Vg (0)

2
(Note that this kernel is always (d + 1)-dimensional, since the variety Vi(J,,)
is d-dimensional (in P"°~1) and smooth.)
Step 2.2 Choose a random vector v € R™ from the intersection of the kernels of the
matrices

(Z(z’>®w§i> 20 @) ) fori=1,...,e
with the kernels of the matrices
(ei®ej—ej®e,-)* for 1 <i<j<n’

(The latter condition ensures v is a symmetric tensor in R”” @ R”. Note also
the point z(¢*Y is omitted.)
For1 <7,k <nand 1 <7 <n denote

Eiju=(®e)®(erQe)+ (e, ®e) D (e; @ej) € R
If visin
Span({vi®vj+vj®vii 0<i<j<d}

U{Ez'jkz—Eukj;l§i<k§n71§j<l§n}

U {Z((€i®€i) ®(e;®@ep) +(e;@er) @ (6, ®e;));1 < gk < ”})7

=1

then repeat Step 2.2. Otherwise the quadratic form
f(z) =v" - (z®2z) € R[z]/ ]y,

does not belong to a?.
Step 3 Construction of a quadratic form in R[z]/.J, that is nonnegative but not sos.

Calculate the greatest 0o > 0 such that dgf + Z?:o h? is nonnegative on V'(.J,).
Then for every 0 < § < §p the quadratic form

d
(5.3 Fy=6f+ > 02
=0

is nonnegative on V'(.J,) but is not a sum of squares.

5.1. Correctness of Algorithm 5.5. The main ingredient in the proof is the theory
of minimal degree varieties as developed in [6]. Since V¢(J,,) is not of minimal degree
for n > 3 by Proposition 5.3, Sos(V(J,)) € Pos(V(J,)). Hence results of [6, Section 3]
apply; their Procedure 3.3 adapted to our set-up is Algorithm 5.5. While Step 1 and
Step 3 follow immediately from the corresponding steps in [6, Procedure 3.3], we note

for Step 2 that “vanishing to the second order at z(” means f(2) = 0 and Vf(z?) €

span {ng(z(i)): 0<j5< (2)2} Since f ¢ a?, the quadratic form 6 f + Z?:o h? is never

a sum of squares, while it is nonnegative on V(J,) for sufficiently small § > 0 by the



CROSS-POSITIVE LINEAR MAPS, POSITIVE AND SUMS OF SQUARES POLYNOMIALS 41

positive definiteness of the Hessian of Z?:o h? at its real zeros 2™, ... 2(°) see the proof
of the correctness of Procedure 3.3 in [6].

5.2. Towards an implementation. Note that the verification in Step 1.2 is computa-
tionally difficult (but can be performed using Grobner basis if n is small). However, since
all steps in the algorithm are performed with random data, all the generic conditions from
[6, Procedure 3.3| are satisfied with probability 1. Hence, by omitting the verification in
Step 1.2, Algorithm 5.5 becomes a Monte Carlo algorithm and yields a correct output
with probability 1. Step 1 and Step 2 are easily implemented as they only require linear
algebra. On the other hand, Step 3 is computationally difficult; testing nonnegativity
even of low degree polynomials is NP-hard, cf. [26].

Several algorithms are available to check nonnegativity of polynomials. Those using
symbolic methods such as quantifier elimination or cylindrical algebraic decomposition
only work for small problem sizes. We employ numerical methods based on the Posi-
tivstellensatz [8]. To reduce the number of equality constraints, we rewrite the quadratic
form F3(z) from (5.3) into x,y variables, obtaining a biquadratic form we denote by a
slight abuse of notation by Fj(x,y).

Proposition 5.6. For f € R[x,y| the following are equivalent:

(i) f >0 on V(I);
(ii) there exist sum of squares oy1,09 € R[x,y]| such that

(5.4) orf —os €l and o1 #0 on V().

Proof. Assume (ii) holds. From (5.4) it follows that f > 0 on S = V(I) \ V(o7). Since
V(I) is irreducible, S is Zariski dense in V'(I). Since S is also open in V (1), it is dense in
V(I) also in the Euclidean topology and hence (i) holds. Conversely, suppose (i) holds.
By the Positivstellensatz (e.g. [8, Corollary 4.4.3]), there is m € N and sums of squares
01,03 such that fo; — oy — f?™ € I. Assume oy = 0 on V(I), then o, € I since I is the
vanishing ideal of V(I) (see §2), whence oy + f?™ € I. Thus, again by the real radical
property of I, f € I. In this case we may simply pick o1 = 1 and o, = 0. [ |

We apply Proposition 5.6 to Fs from (5.3) to search for a ¢ > 0 making Fj(x,y)
nonnegative on V(7). Let § > 0 be fixed and suppose the degree of o1 is < 2d. Then
the ideal constraint in (5.4) immediately converts into a linear matrix inequality and thus
feeds into a semidefinite program (SDP) that can be solved with standard solvers [43].
(Here homogeneity of F5 and I enter. Both o, can be assumed to be homogeneous, and
degos < 2d +4.) To implement the non-equality constraint in (5.4), we pick a random
point (xg,y0) € V(I) and set o1(xo,90) = 1. Our implementation uses bisection, sets
d = 1 and starts with, say, 6 = 1. Then solve the described feasibility SDP. If it has
a solution, stop. If not, replace § by /2 and try again. If no solution has been found
with § greater than some prescribed tolerance, increase d, and reset § = 1. Then repeat
the process. By Proposition 5.6 and the construction of Fj the algorithm will eventually
produce a certificate of nonnegativity for some § > 0. We refer to [4] for a numerical
comparison of polynomial optimization choices for a similar problem.

As in [22] (see also [4]) it might be possible to apply standard techniques [32, 9] to turn
obtained numerical sum of squares certificates into symbolic ones.
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5.3. Example. In this section we give an explicit numerical example of a “proper” cross-
positive map ® : M;(R) — M3(R) built using our ad-hoc implementation of Algorithm
5.5 in Wolfram Mathematica. Working with rational random data as per Algorithm 5.5
quickly leads to very large denominators with bad conditioning, necessitating working
with floating point numbers. Let

pao(x,y) = 75.356 x3y3 + 35.3881 x7y3 — 65.2694 x7yoy3 + 89.2972 x2%1 75
—19.9103 x3x,¥5 + 96.593 x5%1y3 — 47.7404 x3%,735 — 80.1036 X9X1Y2y3
+ 56.4942 x3%1Yoy3 + 37.6343 x5y, + 6.96833 x5y + 17.7278 Xox3y]
+ 38.8145 x3y5 + 23.0293 x3y5 + 37.1699 xox3y5 + 66.6118 x5y3
+22.9845 x3y2 — 66.1642 x9x3y5 — 2.03483 x3y1y2 + 25.0232 x2y17>
+ 35.2335 xox3y1y2 + 1.70127 x3y1y3 — 32.1772 x3y173 — 33.3246 X5X3¥1y3
4 9.37496 x5y2y3 — 41.4656 x3y2y3 + 11.4857 Xox3y27s.

The corresponding linear map @ : S3(R) — S3(R) is as follows:

0. 0. 0.
®(E;) = |0.  75.356  —32.6347
0. —32.6347 35.3881

37.6343  —1.01742 0.850636
. ®(BEy) = |—-1.01742 38.8145 4.68748 | ,
0.850636  4.68748  66.6118

6.96833  12.5116 —16.0886 0. 0. 0.
®(Es3) = | 125116 23.0293 —20.7328|, ®(Eio+ Eo) = 0. 89.2972 —40.0518 ,
—16.0886 —20.7328  22.9845 0. —40.0518  96.593

0. 0. 0.
®(E13+FE31) = |0. —19.9103 28.2471
0. 28.2471 —47.7404

17.7278  17.6168 —16.6623
, ©(Ea+Es) = | 17.6168 37.1699 5.74284 | .
—16.6623 5.74284 —66.1642

The polynomial pg is nonnegative on V(1) but not a sum of squares modulo /. Equiva-
lently, an arbitrary -linear extension P M;3(R) — M;3(R) of ® is a proper cross-positive
map, e.g., ® is trivial on antisymmetric matrices. This example was produced using
Algorithm 5.5 starting with the points

(1 17 B 3 3 21 3 19 7
zt oy 2 2| 72 T2 T2
A ; 0 -3/-24 9 -2

3 3 _ 2 14 2
z® @ 2 -1 1| -4 2 2

3 3 3 3 3
Oy -3 3 3] 5 5 0]

where each 2,y ¢ R3,
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