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Abstract. A ∗-linear map Φ between matrix spaces is cross-positive if it is positive

on orthogonal pairs (U, V ) of positive semidefinite matrices in the sense that ⟨U, V ⟩ :=
tr(UV ) = 0 implies ⟨Φ(U), V ⟩ ≥ 0, and is completely cross-positive if all its ampliations

In⊗Φ are cross-positive. (Completely) cross-positive maps arise in the theory of operator

semigroups, where they are sometimes called exponentially-positive maps, and are also

important in the theory of affine processes on symmetric cones in mathematical finance.

To each Φ as above a bihomogeneous form is associated by pΦ(x, y) = yTΦ(xxT )y.

Then Φ is cross-positive if and only if pΦ is nonnegative on the variety of pairs of orthog-

onal vectors {(x, y) | xT y = 0}. Moreover, Φ is shown to be completely cross-positive

if and only if pΦ is a sum of squares modulo the principal ideal (xT y). These observa-

tions bring the study of cross-positive maps into the powerful setting of real algebraic

geometry. Here this interplay is exploited to prove quantitative bounds on the fraction

of cross-positive maps that are completely cross-positive. Detailed results about cross-

positive maps Φ mapping between 3 × 3 matrices are given. Finally, an algorithm to

produce cross-positive maps that are not completely cross-positive is presented.
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4.3. Reverse Hölder inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3.1. Computations needed for the proof of Proposition 4.10 . . . . . . . . . . . . 20

4.3.2. Proof of Proposition 4.10 for a symmetric bilinear form g . . . . . . . . . . 32

4.3.3. Proof of Proposition 4.10 for a skew-symmetric bilinear form g . . . . 34

4.3.4. Proof of Proposition 4.10 for a general bilinear form g . . . . . . . . . . . . . 35

5. Algorithms and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1. Correctness of Algorithm 5.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2. Towards an implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3. Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

1. Introduction

Let Mn(R) be the vector space of n × n real matrices equipped with the involution

T which is the usual transposition of matrices. We use Mn(R)⪰0 to denote the set of all

positive semidefinite (symmetric) matrices. We let In (resp. 0n) stand for the n×n identity

(resp. zero) matrix. A linear map A : Mn(R) → Mn(R) is ∗-linear if A(UT ) = A(U)T for

all U ∈ Mn(R). A ∗-linear map A is positive if it maps positive semidefinite matrices

into positive semidefinite matrices, and is completely positive if the ampliations

Ik ⊗ A :Mk(R)⊗Mn(R) →Mk(R)⊗Mn(R), U ⊗ V 7→ U ⊗ A(V )

are positive for every k ∈ N. Here ⊗ stands for the Kronecker tensor product of matrices.

Relaxing positivity of A to the condition

(1.1) ∀U, V ∈Mn(R)⪰0 : ⟨U, V ⟩ = 0 ⇒ ⟨A(U), V ⟩ ≥ 0,

where ⟨ , ⟩ denotes the standard scalar product on Mn(R), i.e., ⟨B,C⟩ := tr(CTB), gives

a definition of a cross-positivity of A in which case A is cross-positive. Similarly, we

call A completely cross-positive if

(1.2) ∀k ∈ N, ∀U, V ∈Mnk(R)⪰0 : ⟨U, V ⟩ = 0 ⇒ ⟨(Ik ⊗ A)(U), V ⟩ ≥ 0.

In [23] the authors construct, for the first time, a proper cross-positive map A, that is,

a cross-positive map that is not completely cross-positive. Such maps and the associated

one-parameter semigroups (under composition) {exp(tA) : t ≥ 0} of endomorphisms of a

symmetric cone are an important ingredient in the theory of affine processes on symmet-

ric cones. In the semigroup theory cross-positive (resp. completely cross-positive) maps

are known as exponentially-positive (resp. completely exponentially-positive) maps (see

Section 2.1 for details). Affine processes play a major role in math finance [14]; they are

simple enough to be tractable from the point of view of theory and numerics, while at

the same time sufficiently flexible from a modeling point of view. Affine processes on the

cone of real positive semidefinite matrices were classified in [13, Theorem 2.4], see also [14,

Theorem 2.19] for the classification of affine processes on all symmetric cones. According

to the classification, the linear drift of an affine process is given by a cross-positive map.

The cross-positive map defining the drift is unique only modulo an integral with respect

to a measure that describes jumps of the affine process. The operator defined by the

integral is completely positive, so a drift defined by a cross-positive, but not completely,
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cross-positive map cannot be removed by a change of measure. See [14] or [23, Section 6]

for more details.

In this paper we investigate and quantify the gap between cross-positive maps and

completely cross-positive maps, and provide an algorithm for providing further examples

of proper cross-positive maps. In addition to matrix analysis our main tools include real

algebraic geometry [8], convexity [37, 3] and harmonic analysis [16].

1.1. Main results and readers’ guide. In the preliminary Section 2 we translate the

properties of ∗-linear maps A :Mn(R) →Mn(R) to properties of biquadratic forms

(1.3) pA := yTA(xxT )y ∈ R[x, y],

where x = (x1, . . . , xn), y = (y1, . . . , yn) are tuples of commuting indeterminates. Then

we explain that completely cross-positive maps are much tamer and easier to handle

than cross-positive maps, resembling the well-known relationship between positive and

completely positive maps [12, 1, 22, 40].

The main contribution of this article is three-fold. First, we quantify the gap between

cross-positive and completely cross-positive maps. Roughly speaking, very few cross-

positive maps are completely cross-positive. More precisely, as shown in Corollary 4.8,

the probability pn that a cross-positive mapMn(R) →Mn(R) is completely cross-positive,

is less than (Cn)−
1
2(

n+1
2 )

2

for an absolute constant C, so lim
n→∞

pn = 0. Our proof roughly

follows Blekherman’s outline in his papers characterizing the gap between positive and

sum of squares polynomials [5, 3]. A key new ingredient in the proof is a dimension-

independent reverse Hölder inequality for bilinear biforms given in Section 4.3.

Section 3 considers the smallest nontrivial case, that is, the case of cross-positive maps

A : M3(R) → M3(R). We give real algebraic geometry inspired certificates (Nichtnega-

tivstellensätze) for A to be cross-positive; see Theorem 3.4 for the case when A satisfies

some mild nonsingularity-type assumption, and Corollary 3.11 for the singular case.

Finally, in Section 5, as a side product of our analysis we provide a randomized

polynomial-time algorithm based on semidefinite programming [43] for producing proper

cross-positive maps.

2. Preliminaries

2.1. Cross-positivity in the language of operator semigroups. Consider a ∗-linear
map A : Mn(R) → Mn(R). For each t ∈ R the linear map exp(tA) : Mn(R) → Mn(R)
is defined by exp(tA) =

∑∞
i=0

1
i!
(tA)i. The operator valued function t 7→ exp(tA) is the

solution of the differential equation Ẋ(t) = AX(t), which makes it important in analysis

and applications to physics [25] and math finance [13, 14]. The well-known formula

exp((s+ t)A) = exp(sA) ◦ exp(tA) implies that the set

{exp(tA) : t ≥ 0}

is a (one-parameter) semigroup under composition. The ∗-linear map A is the generator

of this one-parameter semigroup. We call A exponentially-positive, resp. completely

exponentially-positive, if exp(tA) is a positive, resp. completely positive map for all

t ≥ 0. In such a case the semigroup {exp(tA) : t ≥ 0} is a positive, resp. completely

positive one-parameter semigroup. Note the positivity of linear maps and their one-

parameter semigroups is studied more generally over ordered vector spaces, in finite and
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infinite dimensions, and for bounded and unbounded linear operators. We refer the reader

to [17, 30] for detailed studies.

The (complete) exponential positivity property can be rephrased in a more traditional

matrix theory using (complete) cross-positivity.

Theorem 2.1 ([38, Theorem 3]). A ∗-linear map A :Mn(R) →Mn(R) is exponentially-

positive if and only if it is cross-positive.

Corollary 2.2. A ∗-linear map A :Mn(R) →Mn(R) is completely exponentially-positive

if and only if it is completely cross-positive.

Proof. By definition, A is completely cross-positive if and only if Ik ⊗ A is cross-positive

for each k ∈ N. By Theorem 2.1 this holds if and only if Ik ⊗ A is exponentially-positive

for each k ∈ N, i.e., if and only if

∀k ∈ N, ∀t ≥ 0, ∀X ⪰ 0 : exp(t(Ik ⊗ A))(X) =
∞∑
i=0

1

i!
ti(Ik ⊗ A)i(X)

=
(
Ik ⊗

∞∑
i=0

1

i!
(tA)i

)
(X) = (Ik ⊗ exp(tA))(X) ⪰ 0.

However, this is equivalent to complete positivity of exp(tA) for each t ≥ 0, i.e., to

complete exponential positivity of A.

2.2. Cross-positive maps and biquadratic biforms. Let n ≥ 2 and let Sn(R) stand
for the set of all real symmetric n×n matrices. To each linear map A : Sn(R) → Sn(R) we
assign the biquadratic form pA ∈ R[x, y] as in (1.3). Let I ⊆ R[x, y] be the ideal generated
by yTx =

∑n
i=1 xiyi, and let V (I) be the corresponding real variety

V (I) := {(x, y) ∈ Rn × Rn | yTx = 0}.

The variety V (I) is an irreducible hypersurface for n ≥ 2 and the defining polynomial

yTx changes sign on R2n. Hence the ideal I is real radical [8, Theorem 4.5.1]. Thus I is

the vanishing ideal of V (I), i.e., a polynomial p ∈ R[x, y] vanishes on V (I) if and only if

p ∈ I.

A sum of a positive map and a map of the form

(2.1) A(X) = CX +XCT for some C ∈Mn(R) and for all X ∈Mn(R)

is clearly cross-positive. The converse is true up to closure, see [38, Lemma 6 and Theorem

2]. It was long conjectured that each cross-positive map is a sum of a positive map and

a map of the form (2.1) (see [15, Section 4] or [13, p.409]), but a counterexample was

found in [23]. Such counterexamples were called exotic cross-positive maps in [23]. On

the other hand, an analogous counterexample does not exist for completely cross-positive

maps (see [25, Theorem 3]).

The following is a special case of [23, Corollary 15] and [39, Theorem 2], but can also

be established by a straight-forward calculation.

Lemma 2.3. For a linear map A : Sn(R) → Sn(R) we have pA ∈ I if and only if it is of

the form (2.1) for every X ∈ Sn(R).

The following lemma bounds the degrees of the forms needed in the sum of squares

representations of biquadratic biforms modulo I.
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Lemma 2.4. Let a biquadratic biform p ∈ R[x, y] be of the form

(2.2) p =
k∑

i=1

p2i + q

for some k ∈ N, pi ∈ R[x, y] and q ∈ I. Then p is a sum of squares of bilinear forms

modulo the ideal I.

Proof. The polynomial q is of the form q = r(x, y)
(∑n

i=1 xiyi
)
where r(x, y) ∈ R[x, y]. Let

us write pi,j and rj to denote the homogeneous parts of pi and r of degree j. By comparing

the degree 0 parts of both sides of (2.2) we conclude that pi,0 ≡ 0 for each i. Polynomials

pi,1(x, y) are of the form pi,1(x, y) =
∑n

ℓ=1(ai,ℓxℓ + bi,ℓyℓ) where ai,ℓ ∈ R, bi,ℓ ∈ R. If any of

ai,ℓ or bi,ℓ is nonzero, then x2ℓ or y2ℓ should appear in p with a positive coefficient, which

is not true. Hence, pi,1 ≡ 0 for each i and consequently r0 = r1 ≡ 0. By comparing the

degree 4 parts of both sides of (2.2) we get p =
∑k

i=1 p
2
i,2+ r2

(∑n
i=1 xiyi

)
, where pi,2(x, y)

and r2 are linear combinations of monomials of the form xj1xj2 , yj1yj2 and xj1yj2 for some

j1, j2 ∈ {1, . . . , n}. Since p is a biform of bidegree (2, 2), we conclude that only monomials

of the form xℓ1yℓ2 appear nontrivially in pi,2 and r2. This proves the lemma.

We define the map Ψ : (x, α) 7→ (x, y) given by

y1 = α1x2,

yi = αixi+1 − αi−1xi−1 for i = 2, . . . , n− 1,

yn = −αn−1xn−1,

(2.3)

where α = (α1, . . . , αn−1) is a tuple of commuting variables.

Note that the image Ψ(R2n−1) of Ψ is dense in V (I) in the usual Euclidean topology.

This follows by noticing that every point in V (I) can be approximated arbitrarily well by

points with nonzero xi-coordinates, which are in Ψ(R2n−1) since expressing αi from the

system (2.3) above is then well-defined.

Under the map Ψ the biquadratic form pA ∈ R[x, y] of (1.3) corresponds to

(2.4) qA(x, α) = pA
(
Ψ(x, α)

)
∈ R[x, α],

which is a form quartic in x and quadratic in α.

Proposition 2.5. For a ∗-linear map A :Mn(R) →Mn(R) the following are equivalent:

(i) A is cross-positive;

(ii) pA ≥ 0 on V (I);

(iii) qA ≥ 0 on R2n−1.

Proof. The equivalence between (ii) and (iii) follows from the fact that Ψ(R2n−1) is dense

in V (I) in the Euclidean topology.

(i)⇒(ii) Given (x, y) ∈ V (I),

⟨xxT , yyT ⟩ = tr(yyTxxT ) = tr
(
y(yTx)xT

)
= 0.

Hence pA(x, y) = ⟨A(xxT ), yyT ⟩ ≥ 0 by assumption.

(i)⇐(ii) Assume pA is nonnegative on V (I). Given U, V ∈ Mn(R)⪰0 with ⟨U, V ⟩ = 0,

write U =
∑
uiu

T
i and V =

∑
viv

T
i . As the scalar product of two positive semidefinite
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matrices is nonnegative, we deduce ⟨ui, vj⟩ = 0 for all i, j. The assumption now implies

pA(ui, vj) ≥ 0. Then

⟨A(U), V ⟩ =
∑
i,j

⟨A(uiuTi ), vjvTj ⟩ =
∑
i,j

pA(ui, vj) ≥ 0.

We next give the counterpart of Proposition 2.5 for completely cross-positive maps.

Proposition 2.6. Let A : Sn(R) → Sn(R) be a linear map. The following are equivalent:

(i) A extends to some completely cross-positive map Ã :Mn(R) →Mn(R);
(ii) pA is a sum of squares modulo I;

(iii) qA is a sum of squares.

In the proof of the proposition we exploit Newton polytopes to restrict possible terms

appearing in a sum of squares representation of qA.

Let r := (r1, . . . , rn) ∈ Zn
+ stand for a tuple of nonnegative integers, xr for the monomial

xr11 · · · xrnn and conv(E) ⊆ Rn for the convex hull of the set E ⊆ Rn. Recall that the

Newton polytope N(p) of a polynomial p(x) =
∑

r crx
r, where cr ∈ R \ {0}, is the

convex hull of the exponent vectors of the monomials appearing nontrivially in p, i.e.,

N(p) = conv
({
r : xr has a nonzero coefficient in p

})
⊆ Rn.

Proof of Proposition 2.6. (i)⇒(ii): By [25, Theorem 3], Ã(X) = Φ̃(X) + CX +XCT for

some completely positive map Φ̃ and some C ∈ Mn(R). Using [22, Proposition 3.1] for

the restriction Φ̃|Sn(R) of Φ̃ to Sn(R) and Lemma 2.3 for X 7→ CX +XCT , it follows that

pÃ = pA =
∑k

i=1 p
2
i + q for some bilinear forms pi and some biquadratic form q ∈ I, i.e.,

pA is a sum of squares modulo I by Lemma 2.4.

(ii)⇒(i): Using [22, Proposition 3.1] and Lemma 2.3, A(X) = Φ(X) + CX + XCT

for some completely positive map Φ : Sn(R) → Sn(R) and some C ∈ Mn(R). Invoking

Arveson’s extension theorem [31, Theorem 7.5], there exists a completely positive exten-

sion Φ̃ : Mn(R) → Mn(R) of Φ, whence Ã(X) = Φ̃(X) + CX + XCT is a completely

cross-positive extension of A.

(ii)⇒(iii) is obvious, so we prove (iii)⇒(ii). First note the multi-homogeneity of qA
implies that qA is a sum of squares of biforms that are quadratic in x and linear in α. Write

(2.5) qA(x, α) =
m∑
ℓ=1

q(ℓ)(x, α)2,

where q(ℓ)(x, α) =
n−1∑
i=1

∑
1≤j≤k≤n

c
(ℓ,i)
jk αixjxk for some c

(ℓ,i)
jk ∈ R. It follows by definition that

qA is a linear combination of the terms of the following forms:

• (α1x2)
2 xjxk,

• (α1x2)(αixi+1 − αi−1xi−1)xjxk,

• α1αn−1x2xn−1xjxk,

• (αixi+1 − αi−1xi−1)(αℓxℓ+1 − αℓ−1xℓ−1)xjxk,

• (αn−1xn−1)(αixi+1 − αi−1xi−1)xjxk,

• (αn−1xn−1)
2 xjxk,
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where i, ℓ = 2, . . . , n − 1, j, k = 1, . . . , n. By [34, Theorem 1], we have the inclusions

N(q(ℓ)) ⊆ 1
2
N(qA) of Newton polytopes, which implies that each q(ℓ) is a linear combina-

tion of the monomials

(2.6) α1x2xj, αixi+1xj, αi−1xi−1xj, αn−1xn−1xj,

where i = 2, . . . , n− 1 and j = 1, . . . , n.

Claim. Each q(ℓ)(x, α) can be expressed as a polynomial in the polynomials α1x2,

α2x3 − α1x1, . . ., αn−1xn − αn−2xn−2, αn−1xn−1, x1, . . . , xn.

Proof of Claim. We consider how each of the monomials in (2.6) can appear in q(ℓ)(x, α).

For j = 1, . . . , n, the monomials

α1x2xj = (α1x2)xj and αn−1xn−1xj = (αn−1xn−1)xj

can clearly by expressed as the claim suggests. The formula

αixixi+1 =
i∑

s=2

(αsxs+1 − αs−1xs−1)xs + (α1x2)x1

implies the same holds also for the monomials αixixi+1, i = 2, . . . , n− 1.

For i = 2, . . . , n− 1, it remains to consider the monomials

(2.7) αixi+1xj, j ̸= i, and αi−1xi−1xj, j ̸= i.

For s = 1, . . . , n− 2 we define the vectors

α̂s = (0, . . . , 0︸ ︷︷ ︸
s−1
zeroes

, αs, αs+1, 0, . . . , 0︸ ︷︷ ︸
n−s−2
zeroes

),

x̂s = (x1, . . . , xs, 0, xs+2, . . . , xn),

ŷs = (0, . . . , 0︸ ︷︷ ︸
s zeroes

, αs+1xs+2 − αsxs, 0, . . . , 0︸ ︷︷ ︸
n−s−1
zeroes

).

If any of the monomials from (2.7) occurs in q(ℓ)(x, α), then it also occurs in the polynomial

q(ℓ)(x̂i−1, α̂i−1) with the same coefficient. By definition,

qA(x̂i−1, α̂i−1) = ŷi−1A
(
(x̂i−1)

T x̂i−1

)
ŷTi−1 = (αixi+1 − αi−1xi−1)

2A
(
(x̂i−1)

T x̂i−1

)
ii
.

Hence, each q(ℓ)(x̂i−1, α̂i−1) vanishes on V (αixi+1 − αi−1xi−1). Since αixi+1 − αi−1xi−1 is

irreducible in R[x, α] and it changes sign on R2n−1, it follows by [8, Theorem 4.5.1] that

(2.8) q(ℓ)(x̂i−1, α̂i−1) = (αixi+1 − αi−1xi−1)pi−1(x̂i−1),

where pi−1 is a linear form in x̂i−1. Now (2.8) implies that the monomials from (2.7) can

appear nontrivially in q(ℓ)(x̂i−1, α̂i−1) only from the scalar multiple of the term

(αixi+1 − αi−1xi−1)xj,

which concludes the proof of the claim. □

Using the Claim and (2.5) it follows that pA(x, y) agrees on a dense subset of V (I) and

by continuity on the whole V (I) with a sum of squares polynomial, which we denote by

r(x, y). Since pA − r vanishes on V (I), the polynomial yTx is irreducible in R[x, y] and
its sign changes on R2n−1, it follows that pA − r ∈ I by [8, Theorem 4.5.1].
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3. Nichtnegativstellensätze for the case n = 3

In this section we will establish, in the case n = 3, some certificates of global nonnegativ-

ity for the form qA(x, α) of (2.4) or nonnegativity for pA(x, y) of (1.3) on V (I). By Proposi-

tion 2.5, this yields certificates for a ∗-linear map A :M3(R) →M3(R) to be cross-positive.

Remark 3.1. In the case n = 2,

qA(x, α) = α2
1 · pA((x1, x2), (x2,−x1))

and since pA((x1, x2), (x2,−x1)) is a quartic form, it follows by [19] that qA is nonnegative

if and only if it is a sum of squares.

For a matrix polynomial A(x) ∈ Mm(R[x]) we denote by tr(A(x)) its trace, i.e., the

sum of the diagonal entries. For a ring R we denote by
∑
Mm(R)

2 the set of all finite sums

of the expressions of the form GTG, where G ∈ Mm(R). Every element of
∑
Mm(R)

2 is

a sum of squares (sos) matrix polynomial. We say a symmetric matrix polynomial

A(x) ∈Mm(R[x])sym is positive semidefinite (psd) in x ∈ Rn if vTA(x)v ≥ 0 for every

v ∈ Rm, and write A(x) ⪰ 0. We call A(x) ∈Mm(R[x])sym psd if it is psd in every x ∈ Rn.

In this paragraph we connect, for every n ∈ N, global nonnegativity of qA(x, α) with

positive semidefiniteness of a certain matrix polynomial. We denote by R[x]hom the set of

homogeneous real polynomials in x. Since qA(x, α) is a quadratic form in α with coefficients

from R[x]hom, we can associate to it a symmetric matrix polynomial QA ∈Mn−1(R[x]hom)
such that

(3.1) αTQA(x)α = qA(x, α).

Proposition 3.2. The polynomial qA(x, α) is globally nonnegative if and only if QA(x) is

positive semidefinite for all x.

Proof. The statement follows by the equality (3.1).

Remark 3.3. Note that in the case n = 3, Proposition 3.2 implies that the parameteriza-

tion (2.3) leads to the reduction of the problem of certifying cross-positivity of the map A

to certifying positivity of the 2×2 matrix polynomial QA. Under the assumption that QA

does not vanish in any point of R3 we establish such a certificate in Theorem 3.4 below.

Let A(x) ∈ Mm(R[x]hom) be a matrix polynomial. We call x ∈ Rn a zero of A(x), if

A(x) is a zero matrix. A zero x ∈ Rn of A(x) is nontrivial, if x ̸= 0. The following

theorem is the first main result of this section. It is a certificate for QA without nontrivial

zeroes to be psd in case n = 3.

Theorem 3.4. Let Q(x) ∈ M2(R[x1, x2, x3]hom) be a 2 × 2 symmetric matrix polynomial

over R[x]hom, i.e., Q(x)T = Q(x). The following statements are equivalent:

(i) Q(x) is positive semidefinite and does not have nontrivial real zeroes.

(ii) trQ is strictly positive on R3 \ {0} and detQ is nonnegative on R3 \ {0}.
(iii) trQ is strictly positive on R3 \{0} and there exists N ∈ N such that tr(Q)N ·detQ

is a sum of squares of forms.

(iv) trQ is strictly positive on R3 \ {0} and there exists N ∈ N such that

(x21 + x22 + x23)
N ·Q ∈

∑
M2(R[x])2.

Moreover, if all entries of Q(x) are of the same degree and Q(x) does not have nontrivial

complex zeroes, then (i)-(iv) imply that:
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(v) If J ⊆ R[x] is the ideal in R[x] generated by the polynomial 1− x21 − x22 − x23, then

Q ∈
∑

M2(R[x])2 +M2(J).

Proof of the equivalences (i) ⇔ (ii) ⇔ (iii) of Theorem 3.4. Since the trace and the deter-

minant of a matrix are the sum and the product of the eigenvalues, respectively, the

equivalence between (i) and (ii) is easy to see. The nontrivial implication (⇒) in the

equivalence (ii) ⇔ (iii) follows by [36, Corollary 3.12]. □

We equip the set of matrix polynomials Mm(C[x]) with the conjugate transpose in-

volution ∗ and write Mm(C[x])her for the subset of hermitian matrix polynomials, i.e.,

F ∈ Mm(C[x]) with F ∗ = F . In the proof of (i) ⇒ (iv) of Theorem 3.4 we will make use

of the following factorization lemma.

Lemma 3.5. For Q =

[
a b

b∗ c

]
∈M2(C[x])her the following equalities hold:

a4Q =

[
a 0

b∗ a

] [
a3 0

0 a(ac− bb∗)

] [
a b

0 a

]
,(3.2) [

a3 0

0 a(ac− bb∗)

]
=

[
a 0

−b∗ a

]
Q

[
a −b
0 a

]
.(3.3)

Proof. Easy computation. ■

Proof of the equivalence (i) ⇔ (iv) of Theorem 3.4. The nontrivial implication is (⇒). We

write Q =

[
a b

b c

]
. It is easy to check that

Q = V

[
tr(Q) i(a− c) + 2b

i(c− a) + 2b tr(Q)

]
V ∗,

where V = 1
2

[
1 i

i 1

]
. By (3.2),

(3.4) tr(Q)4 Q = Ṽ

[
tr(Q)3 0

0 tr(Q)(tr(Q)2 − dd∗)

]
Ṽ ∗,

where Ṽ = V

[
tr(Q) 0

d∗ tr(Q)

]
and d := i(a−c)+2b. A computation shows tr(Q)2−dd∗ =

4detQ. Since the left hand side of (3.4) belongs toM2(R[x]hom), the right hand side equals

V1

[
tr(Q)3 0

0 4 trQ detQ

]
︸ ︷︷ ︸

=:D

V T
1 + V2

[
tr(Q)3 0

0 4 trQ detQ

]
V T
2

where V1, V2 ∈ M2(R[x]) are the real and imaginary parts of Ṽ . Now (iv) follows by [36,

Corollary 3.12] since there exists N ∈ N large enough such that each form on the diagonal

of D multiplied by (x21 + x22 + x23)
N is a sum of squares of forms. ■

Remark 3.6. If Q in Theorem 3.4 is quartic (for example, Q = QA), then trQ is a

ternary quartic. Thus it is a sum of three squares by [19]. So in that case the exponent

N in (iv) of Theorem 3.4 depends only on detQ which is of degree 8. By [20] there is a

positive form q of degree 4 such that q detQ is a sum of squares of three forms. Moreover,

q2 detQ is a sum of squares of four forms [24]. See also [35, p. 2830].
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It remains to prove the implication (i) ⇒ (v) in Theorem 3.4. We will use Scheiderer’s

local-global principle [36]. For this aim we first prove the following proposition.

Proposition 3.7. Assume in the notation of Theorem 3.4 that statement (i) holds and

Q(x) does not have nontrivial complex zeroes. Then for every x0 ∈ C3 \ {0} there exists

a polynomial h ∈ R[x] such that h(x0) ̸= 0 and

h2Q ∈
∑

M2(R[x])2 +M2(J).

Proof of Proposition 3.7. Let us write Q(x) =

[
a(x) b(x)

b(x) c(x)

]
and choose x0 ∈ C3 \ {0}.

Since Q is without nontrivial complex zeros, one of the following cases applies:

(1) a(x0) ̸= 0.

(2) a(x0) = 0 and c(x0) ̸= 0.

(3) a(x0) = c(x0) = 0 and b(x0) ̸= 0.

Claim. There exists an orthogonal matrix U ∈ M2(R) such that, denoting UQUT =[
ã(x) b̃(x)

b̃(x) c̃(x)

]
, ã(x0) ̸= 0.

Proof of Claim. If we are in Case (1), then we can take the identity matrix for U . If we

are in Case (2), then we take a permutation matrix for U . Finally, in Case (3), we define

U = 1√
2

[
1 1

1 −1

]
and note that ã(x) = 1

2
(a(x) + 2b(x) + c(x)). Hence, ã(x0) ̸= 0. □

By (3.2),

ã4 Q = UT

[
ã 0

b̃ ã

] [
d1 0

0 d2

] [
ã b̃

0 ã

]
U,

where

d1 = ã3 ∈ R[x] and d2 = ã
(
ãc̃− b̃2

)
∈ R[x].

By (3.3), [
d1 0

0 d2

]
=

[
ã 0

−b̃ ã

]
UQUT

[
ã −b̃
0 ã

]
.

It follows that d1 ≥ 0, d2 ≥ 0 on R3. By [36, Theorem 3.2], d1 and d2 belong to
∑

R[x]2+J .
This concludes the proof. ■

Proof of the implication (i) ⇒ (v) of Theorem 3.4. Let R := R[x]/J be a quotient ring

and let Φ : R → C(V (J),R) be the natural map, i.e., Φ(f̌) = f |V (J), where f ∈ R[x],
f̌ = f + J and the variety V (J) is the set

{
x ∈ R3 :

∑3
i=1 x

2
i = 1

}
. Let

L :=
〈
ȟ2 ∈ R[x]/J : h2Q ∈

∑
M2(R[x])2 +M2(J)

〉
be an ideal in R[x]/J . If L were a proper ideal, then all its elements would have a common

zero x0 ∈ {x ∈ C3 :
∑3

i=1 x
2
i = 1}. By Proposition 3.7, there exists h ∈ R[x] such that

h(x0) ̸= 0 and ȟ2 ∈ L. Hence L is not a proper ideal and thus L = R[x]/J . In particular,

there exist ȟ21, . . . , ȟ
2
k ∈ L such that 1 + J ∈ ⟨ȟ21, . . . , ȟ2k⟩. By [36, Proposition 2.7], there
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exist s1, . . . , sk ∈ R[x] with sj > 0 on V (J) such that
∑k

j=1 sjh
2
j ∈ 1+J . By [36, Theorem

3.2], sj ∈
∑

R[x]2 + J . Hence

k∑
j=1

sjh
2
j(Q+M2(J)) = Q+M2(J) ∈

∑
M2(R[x])2 +M2(J),

which concludes the proof. ■

The following lemma, which holds in every dimension n, gives a special sufficient con-

dition for a biquadratic form pA that is nonnegative on V (I) to be a sum of a globally

nonnegative biquadratic form and an element of I. Using the language of [23], a cross-

positive map A satisfying this condition is not exotic. The lemma will be used in Corollary

3.11 to establish the second main result of this section: a certificate for nonnegativity of

pA on V (I) in the case n = 3 when QA has a nontrivial real zero.

Lemma 3.8. Let A : Mn(R) → Mn(R) be a cross-positive map and assume that there

exists a nonzero vector x0 ∈ Rn such that

(3.5)
(
In −

1

||x0||2
x0x

T
0

)
A(x0x

T
0 )
(
In −

1

||x0||2
x0x

T
0

)
= 0n.

Then there exists C ∈Mn(R) such that the map X 7→ A(X)− CX −XCT is positive.

For each i = 1, . . . , n let ei be the i-th element of the standard basis of Rn, i.e., the

vector with 1 in the i-th component and 0 elsewhere. We denote by Eij := eie
T
j the

standard n× n matrix units.

Remark 3.9. In the proof of Lemma 3.8 and Corollary 3.11 below we will use the following

action of GLn on the set of cross-positive linear maps A :Mn(R) →Mn(R):

(g · A)(X) = gA(g−1Xg−T )gT .

Proof of Lemma 3.8. By Remark 3.9 we can assume that x0 = e1. Then (3.5) means that

A(E11) is of the following form:

A(E11) =

[
∗ ∗
∗ 0n−1

]
.

The idea of the proof consists of the following steps:

(1) There exists a matrix C ∈Mn(R) such that the map B :Mn(R) →Mn(R), defined
by B(X) := A(X)− CX −XCT , satisfies the following conditions:

B(E11) = 0n,(3.6)

B(E1i + Ei1)e1 = 0 for i = 2, . . . , n.(3.7)

(2) Using (3.6) and cross-positivity of B it follows that

(3.8) B(E1i + Ei1)ej = 0 for i, j = 2, . . . , n.

(3) yTB(xxT )y ≥ 0 for every x, y ∈ Rn.

To prove (1) first write C =
[
c1 · · · cn

]
in column form, where cj are the columns

of C and note that

(3.9) CEij =
[
0n×(j−1) ci 0n×(n−j)

]
,
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where 0k×ℓ stands for the k × ℓ zero matrix. Using (3.9) note that the condition (3.6)

determines c1, while conditions in (3.7) determine columns ci, i = 2, . . . , n, i.e.,

c1 = A(E11)e1 −
1

2
eT1A(E11)e1 · e1,

ci = A(E1i + Ei1)e1 −
1

2
eT1A(E1i + Ei1)e1 · e1 −

1

2
eT1A(E11)e1 · ei for i = 2, . . . , n.

By (3.6) it follows that pB(e1, y) = 0 (where pB is as in (1.3)) for every y ∈ Rn. In

particular, ∂pB
∂yi

(e1, y) = 0 for every y ∈ Rn and every i = 1, . . . , n. Since pB(x, y) ≥ 0 on

V (I), for each y ⊥ e1 there exists a Lagrange multiplier λ(y) ∈ R such that

(3.10) grad pB(e1, y) = λ(y) gradh(e1, y),

where h(x, y) = yTx. In particular,

0 =
∂pB
∂y1

(e1, y) = λ(y)
∂h

∂y1
(e1, y) = λ(y),

and using λ(y) = 0 in (3.10) implies that

(3.11) 0 =
∂pB
∂xi

(e1, y) = yTB(e1e
T
i + eie

T
1 )y for every i = 2, . . . , n.

Since y is any vector orthogonal to e1, this proves (2).

It remains to check (3). We write x = λe1 + v and y = µe1 +w for some v, w ⊥ e1 and

some λ, µ ∈ R. Using (3.6)–(3.8) we see that B(e1e
T
i + eie

T
1 ) = 0 for each i = 1, . . . , n

and thus B(xxT ) = B(vvT ) = B((νe1 + v)(νe1 + v)T ) for each ν ∈ R. If µ ̸= 0, then

yT (v − wT v
µ
e1) = 0, therefore cross-positivity of B implies

0 ≤ yTB

((
v − wTv

µ
e1

)(
v − wTv

µ
e1

)T
)
y = yTB(xxT )y.

On the other hand, if µ = 0, then a sequence {zk}k∈N, where zk := 1
k
e1 + w, satisfies

zTk e1 ̸= 0 for each k ∈ N and y = limk→∞ zk. By the above, zTk B(xxT )zk ≥ 0 for each

k ∈ N, therefore
yTB(xxT )y = lim

k→∞
zTk B(xxT )zk ≥ 0.

This concludes the proof of Lemma 3.8. ■

Remark 3.10. As a consequence of Lemma 3.8 it follows that testing cross-positivity of

a linear map is a NP-hard problem, since this is true for testing positivity of a biquadratic

form, see, e.g., [26, Theorem 2.2]. Indeed, let A : Mn(R) → Mn(R) be an arbitrary ∗-
linear map. Let D : Mn+1(R) →Mn(R) be the map that deletes the first row and column

and let B : Mn+1(R) →Mn+1(R) be defined by B(X) =

[
0 0

0 A(D(X))

]
. It is clear that

the map A is positive if and only if B is. However, B(E11) = 0 and B(E1i + Ei1) = 0

for i = 2, . . . , n + 1, hence the proof of Lemma 3.8 implies that B is positive if and only

if it is cross-positive. Thus the problem of testing whether B is cross-positive is from a

computational complexity viewpoint at least as hard as checking whether A is positive,

implying that testing cross-positivity of a map is NP-hard.

Corollary 3.11. Let n = 3 and let p ∈ R[x, y] be a biquadratic form which is nonnegative

on the real variety V (I). Assume that there exist a nonzero vector v0 ∈ R3 and two

linearly independent vectors w1, w2 ⊥ v0 such that p(v0, w1) = p(v0, w2) = 0 or that there
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exist a nonzero vector w0 ∈ R3 and two linearly independent vectors v1, v2 ⊥ w0 such that

p(v1, w0) = p(v2, w0) = 0. Then p ∈
∑

R[x, y]2 + I.

Proof. By symmetry we can assume that there exist v0 ∈ R3\{0} and linearly inde-

pendent vectors w1, w2 ⊥ v0 such that p(v0, w1) = p(v0, w2) = 0. As p is nonnegative

on V (I) it is equal to pA for some cross-positive map A : M3(R) → M3(R). By Re-

mark 3.9 we may assume that v0 = e1. By the assumption of the corollary the qua-

dratic form (λ, µ) 7→ pA(e1, λw1 + µw2) is positive semidefinite with zero coefficients at

λ2 and at µ2. Consequently, pA(e1, λw1 + µw2) = 0 for all λ, µ ∈ R, or equivalently,

wTA(e1e
T
1 )w = 0 for each w ⊥ e1. By Lemma 3.8 there exists C ∈ M3(R) such that

the map B : M3(R) → M3(R), defined by B(X) = A(X)− CX −XCT , is positive. The

biquadratic form pB satisfies the assumptions of [33, Lemma 4.2], so it is a sum of squares

of bilinear forms. As pA − pB ∈ I by the construction of B, this proves the corollary. ■

4. Blekherman type volume estimates

In this section we quantify the gap between cross-positive and completely cross-positive

maps by extending the estimates on the volumes of compact sections of the cones of non-

negative biforms established in [22] to nonnegative biforms on the variety V (I). The

proofs are analogous to those in [22] and are inspired by [5, 3].

Let n ≥ 3 and R[x, y]k1,k2 be the subspace of biforms of bidegree (k1, k2), i.e.,

polynomials from R[x, y] which are homogeneous of degree k1 in x = (x1, . . . , xn) and of

degree k2 in y = (y1, . . . , yn). Let

Q := R[x, y]2,2/(I ∩ R[x, y]2,2)

be the quotient space. We write

Pos
(n)
Q := {p ∈ Q : p(x, y) ≥ 0 for all (x, y) ∈ V (I)} ,

Sos
(n)
Q :=

{
p ∈ Q : p−

k∑
i=1

p2i ∈ I for some k ∈ N and pi ∈ R[x, y]1,1

}
,

for the cone of polynomials nonnegative on V (I) and the cone of sums of squares on

V (I), respectively. Lemma 2.4 states that if a biform p ∈ R[x, y]2,2 is a sum of squares in

R[x, y]/I, then it is a sum of squares in Q.

We will estimate the gap between the cones Pos
(n)
Q and Sos

(n)
Q by comparing the volumes

of suitably chosen compact sections of these cones. First we have to carefully introduce

an appropriate measure on the set (Sn−1 × Sn−1) ∩ V (I) with respect to which we will

integrate elements from Q. This is the content of the next subsection.

4.1. Definition of integration. We define

T := (Sn−1 × Sn−1) ∩ V (I)

and equip it with the subspace topology. Let C(T ) denote the vector space of all contin-

uous functions on T . The special orthogonal group SO(n) acts on the vector space C(T )

by rotating the coordinates, i.e., for g ∈ SO(n) and f ∈ C(T ),

(4.1) g · f(x, y) := f(g−1x, g−1y).
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Choose a point w := (x, y) ∈ T and define a map ϕw : SO(n) → T by ϕw(g) = gw =

(gx, gy). Observe that since n ≥ 3 the map is surjective and its kernel

ker(ϕw) = {g ∈ SO(n) : gx = x, gy = y}

is homeomorphic to SO(n− 2). We denote by ϕ̂w : SO(n)/ ker(ϕw) → T the induced map

of ϕw on SO(n)/ ker(ϕw), which is the set of left cosets of ker(ϕw) in SO(n). Let σ̂ be the

Haar measure on SO(n). We equip the quotient space SO(n)/ ker(ϕw) with the positive

normalized SO(n)-invariant measure σ induced by σ̂ which exists and is unique. (See [29,

Theorem 1 on p. 138] and use the fact that compact groups are unimodular for uniqueness.)

Proposition 4.1. The pushforward (ϕ̂w)∗(σ) of σ to T is an SO(n)-invariant measure.

Proof. Let ∆ be a Borel subset of T and g ∈ SO(n). Then

(ϕ̂w)∗(σ)(g∆) = σ((ϕ̂w)
−1(g∆)) = σ(g(ϕ̂w)

−1(∆)) = σ((ϕ̂w)
−1(∆)) = (ϕ̂w)∗(σ)(∆),

where we used SO(n)-invariance of σ for the third equality and the following calculation

for the second one:

(ϕ̂w)
−1(g∆) = {g′ ∈ SO(n)/ ker(ϕw) : g

′w ∈ g∆} = {g′ ∈ SO(n)/ ker(ϕw) : g
−1g′w ∈ ∆}

= g{g′′ ∈ SO(n)/ ker(ϕw) : g
′′w ∈ ∆} = g(ϕ̂w)

−1(∆). ■

Proposition 4.2. There exists a unique normalized SO(n)-invariant measure on T .

Proof. We already established the existence of a measure in Proposition 4.1. It remains

to prove the uniqueness. Let us assume to the contrary that µ1 and µ2 are two different

normalized SO(n)-invariant measures on T . Then (ϕ−1
w )∗(µ1) and (ϕ−1

w )∗(µ2) are two

different normalized SO(n)-invariant measures on SO(n)/ ker(ϕw). But this contradicts

the uniqueness of σ. ■

From now on we will denote the measure (ϕ̂w)∗(σ) by σ.

Remark 4.3. In [28, 11] the set T is known as the Stiefel manifold V2,n(R) of all

2–frames in Rn, i.e., the sets of all pairs of orthonormal vectors in Rn. Equivalently,

V2,n(R) is the set of all real n× 2 matrices X such that XTX is the 2× 2 identity matrix.

Regarding T as a manifold, it can also be equipped with the uniform normalized measure

with respect to the action of the orthogonal group SO(n) [11, §1.4.3]. This measure

coincides with the measure σ introduced above.

4.2. Estimates. Now that we defined the measure on T , we can construct the appropri-

ate sections of PosQ and SosQ and present the volume estimates for these sections (see

Theorems 4.5, 4.6 below).

The Lp norm of a biform f ∈ Q on T is given by

∥f∥pp =
∫
T

|f |p dσ,

while the supremum norm is

∥f∥∞ := max
(x,y)∈T

|f(x, y)|.

Let H(n)
Q be the hyperplane of biforms from Q of average 1 on T , i.e.,

H(n)
Q =

{
f ∈ Q :

∫
T

f dσ = 1

}
.
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Let
(
Pos

(n)
Q

)′
and

(
Sos

(n)
Q

)′
be the sections of the cones Pos

(n)
Q and Sos

(n)
Q ,(

Pos
(n)
Q

)′
= Pos

(n)
Q

⋂
H(n)

Q ,(
Sos

(n)
Q

)′
= Sos

(n)
Q

⋂
H(n)

Q .

Thus
(
Pos

(n)
Q

)′
and

(
Sos

(n)
Q

)′
are convex and compact full-dimensional sets in the finite

dimensional hyperplane H(n)
Q . For technical reasons we translate these sections by sub-

tracting the polynomial (
∑n

i=1 x
2
i )(
∑n

i=1 y
2
i ), i.e.,

P̃os
(n)

Q =

{
f ∈ Q : f + (

n∑
i=1

x2i )(
n∑

i=1

y2i ) ∈
(
Pos

(n)
Q

)′}
,

S̃os
(n)

Q =

{
f ∈ Q : f + (

n∑
i=1

x2i )(
n∑

i=1

y2i ) ∈
(
Sos

(n)
Q

)′}
.

Let M := M(n)
Q be the hyperplane of biforms from Q with average 0 on T ,

(4.2) M =

{
f ∈ Q :

∫
T

f dσ = 0

}
.

Since σ is normalized, ∫
T

( n∑
i=1

x2i

)( n∑
i=1

y2i

)
dσ = 1,

and hence

P̃os
(n)

Q ⊆ M and S̃os
(n)

Q ⊆ M.

The natural L2 inner product in Q is defined by

(4.3) ⟨f, g⟩ =
∫
T

fg dσ.

With this inner product M is a Hilbert subspace of Q of dimension DM =
(
n+1
2

)2−n2−1

and so it is isomorphic to RDM as a Hilbert space. Let SM, BM be the unit sphere and

the unit ball in M, respectively. Let ψ : RDM → M be a unitary isomorphism and ψ∗µ

the pushforward of the Lebesgue measure µ on RDM to M, i.e., ψ∗µ(E) := µ(ψ−1(E)) for

every Borel measurable set E ⊆ M.

Lemma 4.4. The measure of a Borel set E ⊆ M does not depend on the choice of

the unitary isomorphism ψ, i.e., if ψ1 : RDM → M and ψ2 : RDM → M are unitary

isomorphisms, then (ψ1)∗µ(E) = (ψ2)∗µ(E).

The proof of Lemma 4.4 is the same as the proof of [22, Lemma 1.4].

We are now ready to compare the volumes of the sections defined above. The lower

bound for the volume of the section of nonnegative biforms from Q is as follows:

Theorem 4.5. For n ∈ N,

33 · 10− 20
9

√
n

≤

Vol P̃os
(n)

Q

VolBM

 1
DM

.



16 I. KLEP, K. ŠIVIC, AND A. ZALAR

Next we give the upper bound for the volume of the section of sums of squares biforms

from Q:

Theorem 4.6. For integers n ≥ 3,Vol S̃os
(n)

Q

VolBM

 1
DM

≤ 23 · 3 · 6
1
2 · 1
n
.

Combining the previous two theorems we obtain:

Corollary 4.7. For integers n ≥ 3,Vol S̃os
(n)

Q

Vol P̃os
(n)

Q

 1
DM

≤ 25 · 2 1
2 · 52 · 10 2

9

3
3
2 ·

√
n

.

In the language of cross-positive and completely cross-positive maps, Corollary 4.7 can

be stated in the following form.

Corollary 4.8. For every n ∈ N the probability that a cross-positive map Φ : Mn(R) →
Mn(R) is completely cross-positive, is bounded above by

pn <

(
25 · 2 1

2 · 52 · 10 2
9

3
3
2 ·

√
n

)DM

.

In particular, lim
n→∞

pn = 0.

Here, the probability pn is defined as the ratio between the volumes of the sections S̃os
(n)

Q

and P̃os
(n)

Q in M.

Remark 4.9. (1) The correspondence (1.3) between ∗-linear maps A : Mn(R) →
Mn(R) and biquadratic biforms pA is bijective only when maps are restricted

to symmetric matrices Sn(R). Since nonnegativity of pA on V (I) is equivalent

to A being cross-positive (see Proposition 2.5), while pA being a sum of squares

modulo I is equivalent to the existence of some completely cross-positive extension

Ã : Mn(R) → Mn(R) of the restriction of A to Sn(R) (see Proposition 2.6), pn is

clearly an upper bound for the probability that a cross-positive map is completely

cross-positive.

(2) If we want to compare the sizes of two cones K ⊆ L ⊆ Rn in a fixed metric, then

the most unbiased choice of a compact set C to compare the sizes of K ∩ C and

L ∩ C is the unit ball B of this metric. In our case, the metric is the L2 norm,

coming from the inner product (4.3). In this norm, the condition f ∈ B is given

by a quadratic inequality in the coefficients of f and therefore sharp lower and

upper bounds on K ∩B (resp. L∩B) following the same asymptotics are difficult

to establish. Replacing the unit ball B with a hyperplane whose normal is some

vector from the unit sphere leads to more manageable conditions. The choice of

the hyperplane is not arbitrary, since its position can have a large impact on the

size difference of the intersections, e.g., if the normal is almost perpendicular to

some ray on the boundary of the larger cone L, then the difference in size can

be very large, even if the smaller cone is not significantly smaller. However, if
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there is a vector in the interior of both cones, which is fixed by all symmetries

for each cone, then the orthogonal complement of this vector is a fair choice of

the hyperplane to capture size difference between the cones. In our case, the

polynomial (
∑n

i=1 x
2
i )(
∑n

i=1 y
2
i ) is a fixed point for the action of the orthogonal

group O(n) on R[x, y]2,2, defined by O · p(x, y) = p(O−1x, O−1y). Note that the

ideal I is invariant under this action and therefore the action extends naturally

to the action on Q. It is clear that the sets Pos
(n)
Q and Sos

(n)
Q are invariant under

this action and therefore comparing their sizes by intersecting them with H(n)
Q is

an appropriate choice.

(3) Blekherman [5, Theorem 6.1] established volume bounds for sum of squares forms.

Our proofs of Theorems 4.5 and 4.6 freely borrows his ideas. An important in-

gredient in the proof of Theorem 4.6 is also a new version of the Reverse Hölder

inequality, which we prove in Section 4.3 below.

(4) In [5] Blekherman proved that for a fixed degree bigger than 2 the ratio between

the volume radii of compact sections of the cones of sum of squares forms and

nonnegative forms goes to 0, as the number of variables goes to infinity. Corollary

4.7 is an analog of his result for sum of squares biquadratic forms and nonnegative

biquadratic forms on Stiefel manifolds V2,n(R). (See Remark 4.3.)

Let V be a real vector space. Recall that, for a convex body K with the origin in its

interior, the gauge GK is defined by

GK : V → R, GK(p) = inf {λ > 0: p ∈ λ · K} .

Proof of Theorem 4.5. We denote K = P̃os
(n)

Q . As in [22, §2.1.1] we establish that(
VolK
VolBM

) 1
DM

≥
(∫

SM

∥f∥∞ dµ̃

)−1

where µ̃ is a rotation invariant probability measure on SM. The proof of the inequality

in Theorem 4.5 now reduces to proving the following claim.

Claim:

∫
SM

∥f∥∞ dµ̃ ≤ 3−3 · 10
20
9 · n

1
2 .

To prove this claim we will use [2, Corollary 2]. Let (Rn ⊗ Rn)⊗2 be the 2-nd tensor

power of Rn ⊗ Rn . Let e1, e2 ∈ Rn be standard unit vectors and let w be the tensor

w := (e1 ⊗ e2)
⊗2 ∈ (Rn ⊗ Rn)⊗2.

The group SO(n) acts on (Rn ⊗Rn)⊗2 by the natural diagonal action, i.e., for g ∈ SO(n)

and all xi ∈ Rn,

g(x1 ⊗ · · · ⊗ x4) = gx1 ⊗ · · · ⊗ gx4

and extend by linearity. We also define

v := w − q, where q =

∫
g∈SO(n)

gw dσ̂(g),

and we integrate with respect to the Haar measure σ̂ on SO(n). As in [3, Example 1.2],

we proceed as follows:
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(1) We identify the vector space of biforms from Q with the vector space V1 of the

restrictions of linear functionals ℓ : (Rn ⊗ Rn)⊗2 → R to the orbit

SO(n)w = {(x⊗ y)⊗2 : ∥x∥ = ∥y∥ = 1, yTx = 0}.

Note also that SO(n)(e1 ⊗ e2) = T .

(2) We identify the vector space of biforms from M with the vector space V2 of the

restrictions of linear functionals ℓ : (Rn ⊗ Rn)⊗2 → R to B = SO(n)v.

(3) We introduce an inner product on V2 by defining

⟨ℓ1, ℓ2⟩ :=
∫
g∈SO(n)

ℓ1(gv) · ℓ2(gv) dσ̂(g).

This inner product also induces the dual inner product on the dual space V ∗
2
∼= V2

which we also denote by ⟨·, ·⟩.
By [2, Corollary 2],

∥f∥∞ ≤ (Dk)
1
2k · ∥f∥2k ,

where Dk = dim span{gw⊗k : g ∈ SO(n)}. Clearly,

Dk ≤ dim span{ge⊗2k
1 : g ∈ SO(n)} · dim span{ge⊗2k

2 : g ∈ SO(n)} =

(
2k + n− 1

2k

)2

,

where the equality follows as in [2, p. 404]. If n is odd, we let 2k0 = 9(n− 1). Otherwise

take 2k0 = 9n to get

D
1

2k0
k0

≤
(

20
9
k0

2k0

) 1
k0

.

Since 2k0 = 9ℓ0 for some ℓ0 ∈ N,

D
1

2k0
k0

≤
(
10ℓ0
9ℓ0

) 2
9ℓ0

≤
(
10

9
· 10

1
9

)2

,

where we used [22, Lemma 2.2] in the last inequality.

To prove the Claim it remains to estimate the average L2k0 norm, i.e.,

(4.4) A =

∫
SM

∥f∥2k0 dµ̃ =

∫
SM

(∫
T

f 2k0 dσ

) 1
2k0

dµ̃.

Notice that

(4.5)

∫
SM

(∫
T

f 2k0 dσ

) 1
2k0

dµ̃ =

∫
c∈SV ∗

2

(∫
g∈SO(n)

⟨c, gv⟩2k0dσ̂(g)
) 1

2k0

dσ̆(c),

where SV ∗
2
is the unit sphere in V ∗

2 endowed with the rotation invariant probability measure

σ̆. Combining (4.4), (4.5) we obtain

A =

∫
c∈SV ∗

2

(∫
g∈SO(n)

⟨c, gv⟩2k0dσ̂(g)
) 1

2k0

dσ̆(c) ≤

√
2k0⟨v, v⟩
DM

=
√

2k0,

where we used [3, Lemma 3.5] for the inequality and [3, Remark p. 62] for the last equality.

This equality proves the Claim and establishes the lower bound in Theorem 4.5. ■
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Proof of Theorem 4.6. We write S̃os = S̃os
(n)

Q for brevity. We define the support function

LS̃os of S̃os by

LS̃os : M → R, LS̃os(f) = max
g∈S̃os

⟨f, g⟩ .

Let SU be the unit sphere in U := R[x, y]1,1/(I ∩ R[x, y]1,1) equipped with the L2 norm,

and let ∥ ∥sq be the norm on Q defined by

∥f∥sq = max
g∈SU

|⟨f, g2⟩|.

As in [22, §2.3.1], it follows that(
Vol S̃os

VolBM

) 1
DM

≤
∫
SM

∥f∥sq dµ̃.

To prove the inequality of Theorem 4.6 it now suffices to prove the following claim.

Claim:

∫
SM

∥f∥sq dµ̃ ≤ 23 · 3 ·
√
6 · 1

n
.

For f ∈ Q let Hf be the quadratic form on U defined by

Hf (g) = ⟨f, g2⟩ for g ∈ U .

Note that

∥f∥sq = ∥Hf∥∞.
Here ∥Hf∥∞ stands for the supremum norm of Hf on the unit sphere SU .

Let µ̂ be the SO(n)-invariant probability measure on SU . The L2p norm of Hf for a

positive integer p is defined by

∥Hf∥2p :=
(∫

SU

H2p
f (g)dµ̂

) 1
2p

.

As in [22, p. 3343–3344] (for k1 = k2 = 1), it follows that∫
SM

∥Hf∥∞dµ̃ ≤ 2
√
3

∫
SM

∥Hf∥2DUdµ̃ ≤ 2
√
3 ·max

g∈SU
∥g2∥2 ·

√
2DU

DM
≤ 2

√
3 · 6 ·

√
2DU

DM
,

where the last inequality follows by ∥g2∥2 = ∥g∥24 and Proposition 4.10 below. To prove

the Claim it remains to establish

(4.6)

√
2DU

DM
≤ 2

3
2n−1.

The dimensions DU , DM are easily verified to be

DU = dimR[x, y]1,1 − 1 = n2 − 1,

DM = dimR[x, y]2,2 − dim(R[x, y]2,2 ∩ I)− 1 =
(n(n+ 1)

2

)2
− n2 − 1.

Observe that

2DU

DM
=

23(n2 − 1)

n2(n+ 1)2 − 4n2 − 4
=

23(n2 − 1)

(n2 − 1)(n+ 1)2 − 3(n2 − 1) + 2n− 6

≤︸︷︷︸
n>2

23

n2 + 2n− 2
≤ 23

n2
,
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which proves (4.6). ■

4.3. Reverse Hölder inequality. We write I1,1 = I ∩ R[x, y]1,1. A bilinear form g ∈
R[x, y]1,1/I1,1 is symmetric (resp. skew-symmetric) if it of the form g(x, y) = xTAy+

I1,1 for some symmetric (resp. skew-symmetric) matrix A ∈ Rn×n.

Proposition 4.10. For a bilinear biform g ∈ R[x, y]1,1/I1,1,(∫
T

g4 dσ

) 1
4

= ∥g∥4 ≤
√
6 ∥g∥2 =

√
6

(∫
T

g2 dσ

) 1
2

.(4.7)

If g is symmetric, then we can take
√
3 instead of

√
6 in (4.7) above, while if g is skew-

symmetric,
√
6 can be replaced by 4

√
6. Moreover, the constants

√
3 (resp. 4

√
6) are asymp-

totically sharp as n→ ∞.

We point out an important fact about the inequality (4.7), which is crucial for Corollary

4.7. Namely, the constant C in ∥g∥4 ≤ C∥g∥2 can be chosen to be independent of the

number of variables n.

The proof of Proposition 4.10 will be done separately for the symmetric (Section 4.3.2)

and skew-symmetric case (Section 4.3.3), while the general case (Section 4.3.4) follows

from the fact that every bilinear form g can be written as a sum of a symmetric form gs
and a skew-symmetric form ga, together with the observation that gs is perpendicular to ga
in the L2 inner product. For the proof we first need to compute the values of the integrals

of monomials of bidegree (2, 2) and some monomials of bidegree (4, 4) with respect to

σ, which is the content of Section 4.3.1. Using these computations, (4.7) becomes an

inequality in the coefficients of ga (resp. gs). We prove that this inequality holds.

Remark 4.11. In [16] a version of the Reverse Hölder inequality with respect to the

Lebesgue measure on the unit sphere and polynomials of any degree is established. Lemma

2.9 of [22] extends this result to the product measure of two Lebesgue measures on unit

spheres. However, in the proof of Theorem 4.6 we cannot use this extension because the

measure σ is not a product measure. Therefore we have to establish the Reverse Hölder

inequality we need in our setting.

4.3.1. Computations needed for the proof of Proposition 4.10. Let us introduce new vari-

ables

zi = xiyi, i = 1, . . . , n,

zij = xiyj, i, j = 1, . . . , n,

vij = zij + zji, i, j = 1, . . . , n,

wij = zij − zji, i, j = 1, . . . , n.

Lemma 4.12. Let n ≥ 3. The following identities hold:

I1 =

∫
T

z2i dσ =
1

n(n+ 2)
for i = 1, . . . , n.

I2 =

∫
T

zizj dσ = − 1

n− 1
I1 = − 1

(n− 1)n(n+ 2)
for i, j = 1, . . . , n, i ̸= j,

I3 =

∫
T

z2ij dσ =
n+ 1

n− 1
I1 =

n+ 1

(n− 1)n(n+ 2)
for i, j = 1, . . . , n, i ̸= j,
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I4 =

∫
T

v2ij dσ = 2
n

n− 1
I1 =

2

(n− 1)(n+ 2)
for i, j = 1, . . . , n, i ̸= j,

I5 =

∫
T

w2ij dσ = 2
n+ 2

n− 1
I1 =

2

(n− 1)n
for i, j = 1, . . . , n, i ̸= j,

I6 =

∫
T

zijzkl dσ = 0 if at least one of i, j, k, l occurs an odd number of times,

I7 =

∫
T

vijvkl dσ = 0 if at least one of i, j, k, l occurs an odd number of times,

I8 =

∫
T

wijwkl dσ = 0 if at least one of i, j, k, l occurs an odd number of times,

J1 =

∫
T

z4i dσ =
9

n(n+ 2)(n+ 4)(n+ 6)
for i = 1, . . . , n,

J2 =

∫
T

z3i zj dσ = − 1

n− 1
J1 = − 9

(n− 1)n(n+ 2)(n+ 4)(n+ 6)
for i, j = 1, . . . , n, i ̸= j,

J3 =

∫
T

z2i z
2
j dσ =

n2 + 4n+ 15

(n− 1)n(n+ 1)(n+ 2)(n+ 4)(n+ 6)
, for i, j = 1, . . . , n, i ̸= j,

J4 =

∫
T

z2i zjzk dσ = − n− 3

(n− 1)n(n+ 1)(n+ 2)(n+ 4)(n+ 6)

for i, j, k, l = 1, . . . , n, i, j, k pairwise different,

J5 =

∫
T

zizjzkzl dσ =
3

(n− 1)n(n+ 1)(n+ 2)(n+ 4)(n+ 6)

for n ≥ 4 and i, j, k = 1, . . . , n, i, j, k, l pairwise different,

J6 =

∫
T

w4ij dσ =
24

(n− 1)n(n+ 1)(n+ 2)
for i, j = 1 . . . , n, i ̸= j,

J7 =

∫
T

w2ijw
2
kl dσ =

1

6
J6 =

4

(n− 1)n(n+ 1)(n+ 2)

for n ≥ 4 and i, j, k, l pairwise different,

J8 =

∫
T

zijzklzopzrs dσ = 0,

if at least one of i, j, k, l, o, p, r, s occurs an odd number of times,

J9 =

∫
T

wijwklwopwrs dσ = 0,

if at least one of i, j, k, l, o, p, r, s occurs an odd number of times.

In the proof of Lemma 4.12 we will use the following technical lemma. Recall that

n!! =

⌈n
2
⌉−1∏

k=0

(n− 2k) stands for the double factorial of n ∈ N.
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Lemma 4.13. For i ∈ N and j ∈ N ∪ {0} the following equalities hold:

Ai,2j :=

∫ π

0
sini+2j(ϕ) dϕ∫ π

0
sini(ϕ) dϕ

=
(i+ 2j − 1)!! i!!

(i− 1)!! (i+ 2j)!!
,

Bi,2j :=

∫ π

0
cos2(ϕ) sini+2j(ϕ) dϕ∫ π

0
sini(ϕ) dϕ

=
(i+ 2j − 1)!! i!!

(i− 1)!! (i+ 2j + 2))!!
,

Ci,2j :=

∫ π

0
cos4(ϕ) sini+2j(ϕ) dϕ∫ π

0
sini(ϕ) dϕ

= 3
(i+ 2j − 1)!! i!!

(i− 1)!! (i+ 2j + 4))!!
.

Proof. We have

Ai,2j =

∫ π

0
sini+2j(ϕ) dϕ∫ π

0
sini(ϕ) dϕ

=
B
(
i+2j+1

2
, 1
2

)
B
(
i+1
2
, 1
2

) =
Γ
(
i+2j+1

2

)
Γ
(
i+2
2

)
Γ
(
i+1
2

)
Γ
(
i+2j+2

2

)
=

(
i+ 1 + 2(j − 1)

)(
i+ 1 + 2(j − 2)

)
· · ·
(
i+ 1

)(
i+ 2 + 2(j − 1)

)(
i+ 2 + 2(j − 2)

)
· · ·
(
i+ 2

)
=

(i+ 2j − 1)!! i!!

(i− 1)!! (i+ 2j)!!
.

The proofs for Bi,2j and Ci,2j are similar. ■

Now we are ready to prove Lemma 4.12.

Proof of Lemma 4.12. We write

ϕ = (ϕ1, ϕ2, . . . , ϕn−1), ϕ1, . . . , ϕn−2 ∈ [0, π], ϕn−1 ∈ [0, 2π]

ψ = (ψ1, ψ2, . . . , ψn−2), ψ1, . . . , ψn−3 ∈ [0, π], ψn−2 ∈ [0, 2π].

Let

Rj
n(ϕ) =


Ij−1 0 0 0

0 cos(ϕ) − sin(ϕ) 0

0 sin(ϕ) cos(ϕ) 0

0 0 0 In−j−1

 , 1 ≤ j ≤ n− 1,

be a Givens rotation, where Ik stands for the k × k identity matrix, and

H1
n(ϕ) = Rn−1

n (ϕn−1)R
n−2
n (ϕn−2) · · ·R1

n(ϕ1),

H2
n(ψ) = Rn−1

n (ψn−2)R
n−2
n (ψn−3) · · ·R2

n(ψ1).

Then H1
n(ϕ) is (see, e.g., the formula for L1(θ) in [42, p. 3–4] or use induction on n)



cos(ϕ1) − sin(ϕ1) 0 · · · 0

sin(ϕ1) cos(ϕ2) cos(ϕ1) cos(ϕ2) − sin(ϕ2) · · · 0

...
...

... · · ·
...( i−1∏

j=1

sin(ϕj)
)
cos(ϕi) cos(ϕ1)

( i−1∏
j=2

sin(ϕj)
)
cos(ϕi) cos(ϕ2)

( i−1∏
j=3

sin(ϕj)
)
cos(ϕi) · · · 0

...
...

... · · ·
...( n−2∏

j=1

sin(ϕj)
)
cos(ϕn−1) cos(ϕ1)

( n−2∏
j=2

sin(ϕj)
)
cos(ϕn−1) cos(ϕ2)

( n−2∏
j=3

sin(ϕj)
)
cos(ϕn−1) · · · − sin(ϕn−1)

( n−2∏
j=1

sin(ϕj)
)
sin(ϕn−1) cos(ϕ1)

( n−2∏
j=2

sin(ϕj)
)
sin(ϕn−1) cos(ϕ2)

( n−2∏
j=3

sin(ϕj)
)
sin(ϕn−1) · · · cos(ϕn−1)


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and

H2
n(ψ) =

(
1 0

0 H1
n−1(ψ)

)
.

The set T = V2,n(R) (see Remark 4.3) can be parametrized by (see, e.g., [11, p. 48–49] or

[42, §2])

(ϕ, ψ) 7→ (x(ϕ), y(ϕ, ψ)) =


x1(ϕ) y1(ϕ, ψ)

x2(ϕ) y2(ϕ, ψ)
...

...

xn(ϕ) yn(ϕ, ψ)


= the first two columns of H1

n(ϕ)H
2
n(ψ),

where (ϕ, ψ) ∈
(
[0, π]n−2 × [0, 2π]

)
×
(
[0, π]n−3 × [0, 2π]

)
. We define∫

n

=

∫ π

0

· · ·
∫ π

0︸ ︷︷ ︸
n−2

∫ 2π

0

∫ π

0

· · ·
∫ π

0︸ ︷︷ ︸
n−3

∫ 2π

0

,

dϕ = dϕ1dϕ2 . . . dϕn−1, dψ = dψ1dψ2 . . . dψn−2.

We have ∫
T

g(x, y) dσ =

∫
n

g(x(ϕ), y(ϕ, ψ))Vn(ϕ, ψ) dϕdψ,

where by [10, Theorem 2.1] (taking V = x(ϕ), G(V ) = H1
n(ϕ) without the first column

and Z = the first column of H1
n−1(ψ)) and [7],

Vn(ϕ, ψ) =
1

Sn

n−2∏
i=1

sin(ϕi)
n−1−i · 1

Sn−1

n−3∏
i=1

sin(ψi)
n−2−i,

with

Sn =

∫ π

0

· · ·
∫ π

0︸ ︷︷ ︸
n−2

∫ 2π

0

n−2∏
i=1

sin(ϕi)
n−1−i dϕ,

Sn−1 =

∫ π

0

· · ·
∫ π

0︸ ︷︷ ︸
n−3

∫ 2π

0

n−3∏
i=1

sin(ψi)
n−2−i dψ.

By the invariance of the integral with respect to the change of indices we can assume with-

out loss of generality that i, j, k, l ∈ {1, 2, 3, 4} in all equalities of Lemma 4.12. Due to the

difference in parameterizations of some of the coordinates xi(ϕ), yi(ϕ, ψ), i = 1, 2, 3, 4, we

separate cases n ≥ 6, n = 5, n = 4 and n = 3 in the rest of the proof.

Case 1: n ≥ 6. The coordinates xi(ϕ), yi(ϕ, ψ), i = 1, 2, 3, 4, are the following:

x1(ϕ) = cos(ϕ1),

x2(ϕ) = sin(ϕ1) cos(ϕ2),

x3(ϕ) = sin(ϕ1) sin(ϕ2) cos(ϕ3),

x4(ϕ) = sin(ϕ1) sin(ϕ2) sin(ϕ3) cos(ϕ4),

y1(ϕ, ψ) = − sin(ϕ1) cos(ψ1),
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y2(ϕ, ψ) = cos(ϕ1) cos(ϕ2) cos(ψ1)− sin(ϕ2) sin(ψ1) cos(ψ2),

y3(ϕ, ψ) = cos(ϕ1) sin(ϕ2) cos(ϕ3) cos(ψ1) + cos(ϕ2) cos(ϕ3) sin(ψ1) cos(ψ2)

− sin(ϕ3) sin(ψ1) sin(ψ2) cos(ψ3),

y4(ϕ, ψ) = cos(ϕ1) sin(ϕ2) sin(ϕ3) cos(ϕ4) cos(ψ1) + cos(ϕ2) sin(ϕ3) cos(ϕ4) sin(ψ1) cos(ψ2)

+ cos(ϕ3) cos(ϕ4) sin(ψ1) sin(ψ2) cos(ψ3)− sin(ϕ4) sin(ψ1) sin(ψ2) sin(ψ3) cos(ψ4).

In the computations below we will need the following identities in the notation of Lemma

4.13:

An−4,2 =
(n− 3)!! (n− 4)!!

(n− 5)!! (n− 2)!!
=
n− 3

n− 2
,

An−4,4 =
(n− 1)!! (n− 4)!!

(n− 5)!! n!!
=

(n− 3)(n− 1)

(n− 2)n
,

An−2,6 =
(n+ 3)!! (n− 2)!!

(n− 3)!! (n+ 4)!!
=

(n− 1)(n+ 1)(n+ 3)

n(n+ 2)(n+ 4)
,

An−2,8 =
(n+ 5)!! (n− 2)!!

(n− 3)!! (n+ 6)!!
=

(n− 1)(n+ 1)(n+ 3)(n+ 5)

n(n+ 2)(n+ 4)(n+ 6)
,

Bn−5,0 =
(n− 6)!! (n− 5)!!

(n− 6)!! (n− 3)!!
=

1

n− 3
,

Bn−4,0 =
(n− 5)!! (n− 4)!!

(n− 5)!! (n− 2)!!
=

1

n− 2
,

Bn−4,2 =
(n− 3)!! (n− 4)!!

(n− 5)!! n!!
=

n− 3

(n− 2)n
,

Bn−3,0 =
(n− 4)!! (n− 3)!!

(n− 4)!! (n− 1)!!
=

1

n− 1
,

Bn−3,2 =
(n− 2)!! (n− 3)!!

(n− 4)!! (n+ 1)!!
=

n− 2

(n− 1)(n+ 1)
,

Bn−3,4 =
n!! (n− 3)!!

(n− 4)!! (n+ 3)!!
=

(n− 2)n

(n− 1)(n+ 1)(n+ 3)
,

Bn−2,2 =
(n− 1)!! (n− 2)!!

(n− 3)!! (n+ 2)!!
=

n− 1

n(n+ 2)
,

Bn−2,4 =
(n+ 1)!! (n− 2)!!

(n− 3)!! (n+ 4)!!
=

(n− 1)(n+ 1)

n(n+ 2)(n+ 4)
,

Bn−2,6 =
(n+ 3)!! (n− 2)!!

(n− 3)!! (n+ 6)!!
=

(n− 1)(n+ 1)(n+ 3)

n(n+ 2)(n+ 4)(n+ 6)
,

Cn−3,0 = 3
(n− 4)!! (n− 3)!!

(n− 4)!! (n+ 1)!!
=

3

(n− 1)(n+ 1)
,

Cn−3,2 = 3
(n− 2)!! (n− 3)!!

(n− 4)!! (n+ 3)!!
=

3(n− 2)

(n− 1)(n+ 1)(n+ 3)
,

Cn−2,4 = 3
(n+ 1)!! (n− 2)!!

(n− 3)!! (n+ 6)!!
=

3(n− 1)(n+ 1)

n(n+ 2)(n+ 4)(n+ 6)
.

Now we are ready to prove the identities of Lemma 4.12. In the computations below we

include only terms with nonzero integrals, i.e., terms where in none of the factors cos(ϕi)
k

or cos(ψi)
k the exponent k is odd.
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I1 =

∫
T

z21 dσ =

∫
n

cos(ϕ1)
2 sin(ϕ1)

2 cos(ψ1)
2Vn(ϕ, ψ) dϕdψ

= Bn−2,2Bn−3,0 =
n− 1

n(n+ 2)

1

n− 1
=

1

n(n+ 2)
,

I2 =

∫
T

z1z2 dσ = −
∫
n

cos(ϕ1)
2 sin(ϕ1)

2 cos(ϕ2)
2 cos(ψ1)

2Vn(ϕ, ψ) dϕdψ

= −Bn−2,2

(
Bn−3,0

)2
= − n− 1

n(n+ 2)

1

(n− 1)2
= − 1

(n− 1)n(n+ 2)
,

J1 =

∫
T

z41 dσ =

∫
n

cos(ϕ1)
4 sin(ϕ1)

4 cos(ψ1)
4Vn(ϕ, ψ) dϕdψ

= Cn−2,4Cn−3,0 =
3(n− 1)(n+ 1)

n(n+ 2)(n+ 4)(n+ 6)

3

(n− 1)(n+ 1)
=

9

n(n+ 2)(n+ 4)(n+ 6)
,

J2 =

∫
T

z31z2 dσ = −
∫
n

cos(ϕ1)
4 sin(ϕ1)

4 cos(ϕ2)
2 cos(ψ1)

4Vn(ϕ, ψ) dϕdψ

= −Cn−2,4Bn−3,0Cn−3,0 = − 3(n− 1)(n+ 1)

n(n+ 2)(n+ 4)(n+ 6)

1

n− 1

3

(n− 1)(n+ 1)

= − 9

(n− 1)n(n+ 2)(n+ 4)(n+ 6)
,

J3 =

∫
T

z21z
2
2 dσ =

∫
n

cos(ϕ1)
4 sin(ϕ1)

4 cos(ϕ2)
4 cos(ψ1)

4Vn(ϕ, ψ) dϕdψ

+

∫
n

cos(ϕ1)
2 sin(ϕ1)

4 cos(ϕ2)
2 sin(ϕ2)

2 cos(ψ1)
2 sin(ψ1)

2 cos(ψ2)
2Vn(ϕ, ψ) dϕdψ

= Cn−2,4

(
Cn−3,0

)2
+Bn−2,4

(
Bn−3,2

)2
Bn−4,0

=
3(n− 1)(n+ 1)

n(n+ 2)(n+ 4)(n+ 6)

9

(n− 1)2(n+ 1)2
+

(n− 1)(n+ 1)

n(n+ 2)(n+ 4)

(n− 2)2

(n− 1)2(n+ 1)2
1

n− 2

=
n2 + 4n+ 15

(n− 1)n(n+ 1)(n+ 2)(n+ 4)(n+ 6)
,

J4 =

∫
T

z21z2z3 dσ =

∫
n

cos(ϕ1)
4 sin(ϕ1)

4 cos(ϕ2)
2 sin(ϕ2)

2 cos(ϕ3)
2 cos(ψ1)

4·

· Vn(ϕ, ψ) dϕdψ −
∫
n

cos(ϕ1)
2 sin(ϕ1)

4 cos(ϕ2)
2 sin(ϕ2)

2 cos(ϕ3)
2 cos(ψ1)

2 sin(ψ1)
2·

· cos(ψ2)
2Vn(ϕ, ψ) dϕdψ

= Cn−2,4Bn−3,2Bn−4,0Cn−3,0 −Bn−2,4

(
Bn−3,2

)2(
Bn−4,0

)2
=

3(n− 1)(n+ 1)

n(n+ 2)(n+ 4)(n+ 6)

n− 2

(n− 1)(n+ 1)

1

n− 2

3

(n− 1)(n+ 1)

− (n− 1)(n+ 1)

n(n+ 2)(n+ 4)

(n− 2)2

(n− 1)2(n+ 1)2
1

(n− 2)2

= − n− 3

(n− 1)n(n+ 1)(n+ 2)(n+ 4)(n+ 6)
,
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J5 =

∫
T

z1z2z3z4 dσ = −
∫
n

cos(ϕ1)
4 sin(ϕ1)

4 cos(ϕ2)
2 sin(ϕ2)

4 cos(ϕ3)
2 sin(ϕ3)

2·

· cos(ϕ4)
2 cos(ψ1)

4Vn(ϕ, ψ) dϕdψ −
∫
n

cos(ϕ1)
2 sin(ϕ1)

4 cos(ϕ2)
4 sin(ϕ2)

2·

· cos(ϕ3)
2 sin(ϕ3)

2 cos(ϕ4)
2 cos(ψ1)

2 sin(ψ1)
2 cos(ψ2)

2Vn(ϕ, ψ) dϕdψ

+ 2

∫
n

cos(ϕ1)
2 sin(ϕ1)

4 cos(ϕ2)
2 sin(ϕ2)

4 cos(ϕ3)
2 sin(ϕ3)

2 cos(ϕ4)
2 cos(ψ1)

2 sin(ψ1)
2·

· cos(ψ2)
2Vn(ϕ, ψ) dϕdψ +

∫
n

cos(ϕ1)
2 sin(ϕ1)

4 cos(ϕ2)
2 sin(ϕ2)

2·

· cos(ϕ3)
2 sin(ϕ3)

2 cos(ϕ4)
2 cos(ψ1)

2 sin(ψ1)
2 sin(ψ2)

2 cos(ψ3)
2Vn(ϕ, ψ) dϕdψ

= −Cn−2,4Bn−3,4Bn−4,2Bn−5,0Cn−3,0 −Bn−2,4Cn−3,2Bn−4,2Bn−5,0Bn−3,2Bn−4,0

+ 2Bn−2,4Bn−3,4Bn−4,2Bn−5,0Bn−3,2Bn−4,0 +Bn−2,4

(
Bn−3,2

)2
Bn−4,2

(
Bn−5,0

)2
An−4,2

= − 3(n− 1)(n+ 1)

n(n+ 2)(n+ 4)(n+ 6)

(n− 2)n

(n− 1)(n+ 1)(n+ 3)

n− 3

(n− 2)n

1

n− 3

3

(n− 1)(n+ 1)

− (n− 1)(n+ 1)

n(n+ 2)(n+ 4)

3(n− 2)

(n− 1)(n+ 1)(n+ 3)

n− 3

(n− 2)n

1

n− 3

n− 2

(n− 1)(n+ 1)

1

n− 2

+ 2
(n− 1)(n+ 1)

n(n+ 2)(n+ 4)

(n− 2)n

(n− 1)(n+ 1)(n+ 3)

n− 3

(n− 2)n

1

n− 3

n− 2

(n− 1)(n+ 1)

1

n− 2

+
(n− 1)(n+ 1)

n(n+ 2)(n+ 4)

(n− 2)2

(n− 1)2(n+ 1)2
n− 3

(n− 2)n

1

(n− 3)2
n− 3

n− 2

=
3

(n− 1)n(n+ 1)(n+ 2)(n+ 4)(n+ 6)
.

The fact I3 =
n+1
n−1

I1 is a consequence of the following computation:

1 =

∫
T

( n∑
i=1

x2i

)( n∑
i=1

y2i

)
dσ =

∫
T

( n∑
i=1

z2i

)
dσ +

∫
T

(∑
i̸=j

z2ij

)
dσ = nI1 + n(n− 1)I3.

Hence,

1− nI1 =
n+ 1

n+ 2
= n(n− 1)I3,

which implies I3 =
(n+1)

(n−1)n(n+2)
= n+1

n−1
I1.

Further,

I4 =

∫
T

(zij + zji)
2 dσ =

∫
T

(z2ij + 2zijzji + z2ji) dσ =

∫
T

(z2ij + 2zizj + z2ji) dσ

= 2(I3 + I2) = 2
(n+ 1

n− 1
− 1

n− 1

)
I1 =

2n

n− 1
I1 =

2

(n− 1)(n+ 2)
,

I5 =

∫
T

(zij − zji)
2 dσ =

∫
T

(z2ij − 2zijzji + z2ji) dσ =

∫
T

(z2ij − 2zizj + z2ji) dσ

= 2(I3 − I2) = 2
(n+ 1

n− 1
+

1

n− 1

)
I1 =

2(n+ 2)

n− 1
I1 =

2

(n− 1)n
.

Next we prove that
∫
T
zijzkl dσ = 0 if at least one of i, j, k, l occurs an odd number of

times. Write g(x, y) := xiyjxkyl and let i1 be the index among i, j, k, l which occurs an
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odd number of times. Since

g(x1, . . . , xi1−1,−xi1 , xi1+1, . . . , xn, y1, . . . , yi1−1,−yi1 , yi1+1, . . . , yn)

= −g(x1, . . . , xi1−1, xi1 , xi1+1, . . . , xn, y1, . . . , yi1−1, yi1 , yi1+1, . . . , yn)

for every (x, y) ∈ T , it follows that I6 =
∫
T
zijzkl dσ = 0. Consequently, I7 = I8 = 0,

since I7 and I8 are both weighted sums of the integrals of the form I6.

Now we prove J6 =
24

(n−1)n(n+1)(n+2)
. We have∫

T

w412 dσ =

∫
T

(x1y2 − y1x2)
4 dσ

=

∫
T

(x41y
4
2 − 4x31x2y1y

3
2 + 6x21x

2
2y

2
1y

2
2 − 4x1x

3
2y

3
1y2 + x42y

4
1) dσ

= 2

∫
T

x42y
4
1 dσ − 8

∫
T

x1x
3
2y

3
1y2 dσ + 6

∫
T

z21z
2
2 dσ,

where we used that
∫
T
x41y

4
2 dσ =

∫
T
x42y

4
1 dσ and

∫
T
x31x2y1y

3
2 dσ =

∫
T
x1x

3
2y

3
1y2 dσ due to

symmetry of the integral value in the indices of the variables x, y. We compute:

J
(1)
6 =

∫
T

x42y
4
1 dσ =

∫
n

sin(ϕ1)
8 cos(ϕ2)

4 cos(ψ1)
4Vn(ϕ, ψ) dϕdψ

= An−2,8

(
Cn−3,0

)2
=

(n− 1)(n+ 1)(n+ 3)(n+ 5)

n(n+ 2)(n+ 4)(n+ 6)

9

(n− 1)2(n+ 1)2

=
9(n+ 3)(n+ 5)

(n− 1)n(n+ 1)(n+ 2)(n+ 4)(n+ 6)
,

J
(2)
6 =

∫
T

x1x
3
2y

3
1y2 dσ = −

∫
n

cos(ϕ1)
2 sin(ϕ1)

6 cos(ϕ2)
4 cos(ψ1)

4Vn(ϕ, ψ) dϕdψ

= −Bn−2,6

(
Cn−3,0

)2
= − (n− 1)(n+ 1)(n+ 3)

n(n+ 2)(n+ 4)(n+ 6)

9

(n− 1)2(n+ 1)2

= − 9(n+ 3)

(n− 1)n(n+ 1)(n+ 2)(n+ 4)(n+ 6)
,

where in the second integral we included only the term with a nonzero integral. Hence,

J6 = 2J
(1)
6 − 8J

(2)
6 + 6J3 =

24

(n− 1)n(n+ 1)(n+ 2)
.

Next we prove J7 =
4

(n−1)n(n+1)(n+2)
. We have∫

T

w212w
2
34 dσ =

∫
T

(x1y2 − y1x2)
2(x3y4 − y3x4)

2 dσ

=

∫
T

(
x21x

2
3y

2
2y

2
4 − 2x1x2x

2
3y1y2y

2
4 + x22x

2
3y

2
1y

2
4 − 2x21x3x4y

2
2y3y4 + 4x1x2x3x4y1y2y3y4

− 2x22x3x4y
2
1y3y4 + x21x

2
4y

2
2y

2
3 − 2x1x2x

2
4y1y2y

2
3 + x22x

2
4y

2
1y

2
3

)
dσ

= 4

∫
T

x22x
2
4y

2
1y

2
3 dσ − 8

∫
T

x22x3x4y
2
1y3y4 dσ + 4

∫
T

z1z2z3z4 dσ,

where we used that∫
T

x21x
2
3y

2
2y

2
4 dσ =

∫
T

x22x
2
3y

2
1y

2
4 dσ =

∫
T

x21x
2
4y

2
2y

2
3 dσ =

∫
T

x22x
2
4y

2
1y

2
3 dσ,
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T

x1x2x
2
3y1y2y

2
4 dσ =

∫
T

x21x3x4y
2
2y3y4 dσ =

∫
T

x22x3x4y
2
1y3y4 dσ =

∫
T

x1x2x
2
4y1y2y

2
3 dσ

due to the symmetry of the integral value in the indices of the variables x, y. We compute:

J
(1)
7 =

∫
T

x22x
2
4y

2
1y

2
3 dσ =

∫
n

cos(ϕ1)
2 sin(ϕ1)

6 cos(ϕ2)
2 sin(ϕ2)

4 cos(ϕ3)
2 sin(ϕ3)

2·

· cos(ϕ4)
2 cos(ψ1)

4Vn(ϕ, ψ) dϕdψ +

∫
n

sin(ϕ1)
6 cos(ϕ2)

4 sin(ϕ2)
2 cos(ϕ3)

2 sin(ϕ3)
2·

· cos(ϕ4)
2 cos(ψ1)

2 sin(ψ1)
2 cos(ψ2)

2Vn(ϕ, ψ) dϕdψ +

∫
n

sin(ϕ1)
6 cos(ϕ2)

2 sin(ϕ2)
2·

· sin(ϕ3)
4 cos(ϕ4)

2 cos(ψ1)
2 sin(ψ1)

2 sin(ψ2)
2 cos(ψ3)

2Vn(ϕ, ψ) dϕdψ

= Bn−2,6Bn−3,4Bn−4,2Bn−5,0Cn−3,0 + An−2,6Cn−3,2Bn−4,2Bn−5,0Bn−3,2Bn−4,0

+ An−2,6

(
Bn−3,2

)2
An−4,4

(
Bn−5,0

)2
An−4,2

=
(n− 1)(n+ 1)(n+ 3)

n(n+ 2)(n+ 4)(n+ 6)

(n− 2)n

(n− 1)(n+ 1)(n+ 3)

n− 3

(n− 2)n

1

n− 3

3

(n− 1)(n+ 1)

+
(n− 1)(n+ 1)(n+ 3)

n(n+ 2)(n+ 4)

3(n− 2)

(n− 1)(n+ 1)(n+ 3)

n− 3

(n− 2)n

1

n− 3

n− 2

(n− 1)(n+ 1)

1

n− 2

+
(n− 1)(n+ 1)(n+ 3)

n(n+ 2)(n+ 4)

(n− 2)2

(n− 1)2(n+ 1)2
(n− 3)(n− 1)

(n− 2)n

1

(n− 3)2
n− 3

n− 2

=
(n+ 3)(n+ 5)

(n− 1)n(n+ 1)(n+ 2)(n+ 4)(n+ 6)
,

J
(2)
7 =

∫
T

x22x3x4y
2
1y3y4 dσ =

∫
n

cos(ϕ1)
2 sin(ϕ1)

6 cos(ϕ2)
2 sin(ϕ2)

4·

· cos(ϕ3)
2 sin(ϕ3)

2 cos(ϕ4)
2 cos(ψ1)

4Vn(ϕ, ψ) dϕdψ +

∫
n

sin(ϕ1)
6 cos(ϕ2)

4 sin(ϕ2)
2·

· cos(ϕ3)
2 sin(ϕ3)

2 cos(ϕ4)
2 cos(ψ1)

2 sin(ψ1)
2 cos(ψ2)

2Vn(ϕ, ψ) dϕdψ

−
∫
n

sin(ϕ1)
6 cos(ϕ2)

2 sin(ϕ2)
2 cos(ϕ3)

2 sin(ϕ3)
2 cos(ϕ4)

2 cos(ψ1)
2 sin(ψ1)

2

· sin(ψ2)
2 cos(ψ3)

2Vn(ϕ, ψ) dϕdψ

=
3

(n− 1)n(n+ 1)(n+ 2)(n+ 4)(n+ 6)
+

3

(n− 1)n2(n+ 1)(n+ 2)(n+ 4)

− An−2,6

(
Bn−3,2

)2
Bn−4,2Bn−5,0An−4,2Bn−5,0

=
3

(n− 1)n(n+ 1)(n+ 2)(n+ 4)(n+ 6)
+

3

(n− 1)n2(n+ 1)(n+ 2)(n+ 4)

− (n− 1)(n+ 1)(n+ 3)

n(n+ 2)(n+ 4)

(n− 2)2

(n− 1)2(n+ 1)2
n− 3

(n− 2)n

1

n− 3

n− 3

n− 2

1

n− 3

= − n+ 3

(n− 1)n(n+ 1)(n+ 2)(n+ 4)(n+ 6)
,

where we included only the terms with nonzero integrals in the computations. Hence,

J7 = 4J
(1)
7 − 8J

(2)
7 + 4J5 =

4

(n− 1)n(n+ 1)(n+ 2)
.
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The argument for J8 = J9 = 0 is the same as for I6 = I7 = I8 = 0 above.

Case 2: n = 5. Note that the parameterizations of xi(ϕ), i = 1, 2, 3, 4, and yi(ϕ, ψ),

i = 1, 2, 3, are the same as in the case n ≥ 6, while

y4(ϕ, ψ) = cos(ϕ1) sin(ϕ2) sin(ϕ3) cos(ϕ4) cos(ψ1) + cos(ϕ2) sin(ϕ3) cos(ϕ4) sin(ψ1) cos(ψ2)

+ cos(ϕ3) cos(ϕ4) sin(ψ1) sin(ψ2) cos(ψ3)− sin(ϕ4) sin(ψ1) sin(ψ2) sin(ψ3).

So the computations of the integrals of monomials from Lemma 4.12 containing at most 3

different indices remain the same as in the case n ≥ 6. The remaining formulas containing

monomials with possibly more than three different indices are I6, I7, I8, J5, J7, J8, J9. The

arguments for I6 = I7 = I8 = J8 = J9 = 0 are the same as in the case n ≥ 6. The

argument for J5 following the same formula as in the case n ≥ 6 also when applied to

n = 5 is the following computation:

0 =

∫
T

(z1 + z2 + z3 + z4 + z5)
4 dσ =

5∑
i=1

∫
T

z4i dσ + 4
∑
i̸=j

∫
T

z3i zj dσ + 6
∑
i<j

∫
T

z2i z
2
j dσ

+ 12
∑

i,j,k pairw.
diff.,j<k

∫
T

z2i zjzk dσ + 24
∑

i<j<k<l

∫
T

zizjzkzl dσ

= 5J1 + 4 · 2
(
5

2

)
J2 + 6

(
5

2

)
J3 + 12 · 5

(
4

2

)
J4 + 24

(
5

4

)
J5.

Using J1, J2, J3, J4 as stated in Lemma 4.12 for n = 5, we get J5 =
1

27720
, which is also in

accordance with the formula in Lemma 4.12 for n = 5.

It remains to do direct computations for the value of J7. In the notation of case n ≥ 6

we need to compute J
(1)
7 and J

(2)
7 :

J
(1)
7 =

∫
T

x22x
2
4y

2
1y

2
3 dσ =

∫
5

cos(ϕ1)
2 sin(ϕ1)

6 cos(ϕ2)
2 sin(ϕ2)

4 cos(ϕ3)
2 sin(ϕ3)

2·

· cos(ϕ4)
2 cos(ψ1)

4V5(ϕ, ψ) dϕdψ +

∫
5

sin(ϕ1)
6 cos(ϕ2)

4 sin(ϕ2)
2 cos(ϕ3)

2 sin(ϕ3)
2·

· cos(ϕ4)
2 cos(ψ1)

2 sin(ψ1)
2 cos(ψ2)

2V5(ϕ, ψ) dϕdψ +

∫
5

sin(ϕ1)
6 cos(ϕ2)

2 sin(ϕ2)
2·

· sin(ϕ3)
4 cos(ϕ4)

2 cos(ψ1)
2 sin(ψ1)

2 sin(ψ2)
2 cos(ψ3)

2V5(ϕ, ψ) dϕdψ

J
(2)
7 =

∫
T

x22x3x4y
2
1y3y4 dσ =

∫
5

cos(ϕ1)
2 sin(ϕ1)

6 cos(ϕ2)
2 sin(ϕ2)

4 cos(ϕ3)
2 sin(ϕ3)

2·

· cos(ϕ4)
2 cos(ψ1)

4V5(ϕ, ψ) dϕdψ +

∫
5

sin(ϕ1)
6 cos(ϕ2)

4 sin(ϕ2)
2 cos(ϕ3)

2 sin(ϕ3)
2·

· cos(ϕ4)
2 cos(ψ1)

2 sin(ψ1)
2 cos(ψ2)

2V5(ϕ, ψ) dϕdψ −
∫
5

sin(ϕ1)
6 cos(ϕ2)

2 sin(ϕ2)
2·

· cos(ϕ3)
2 sin(ϕ3)

2 cos(ϕ4)
2 cos(ψ1)

2 sin(ψ1)
2 sin(ψ2)

2 cos(ψ3)
2V5(ϕ, ψ) dϕdψ.
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In all of the formulas above the difference from the case n ≥ 6 is that integration intervals

for ϕ4 and ψ3 are [0, 2π] instead of [0, π]. However, since

(4.8)

∫ 2π

0
cos(ϕ)2i sin(ϕ)2j dϕ∫ 2π

0
1 dϕ

=

∫ π

0
cos(ϕ)2i sin(ϕ)2j dϕ∫ π

0
1 dϕ

for all i, j ∈ N ∪ {0},

we can replace both intervals [0, 2π] with [0, π]. Since the integrands are precisely as in

the case n ≥ 6 with n = 5, the formulas for J7 from the case n ≥ 6 hold also when applied

to n = 5.

Case 3: n = 4. Note that the parameterizations of xi(ϕ), i = 1, 2, 3, and yi(ϕ, ψ), i = 1, 2,

are the same as in the case n ≥ 6, while

x4(ϕ) = sin(ϕ1) sin(ϕ2) sin(ϕ3),

y3(ϕ, ψ1, ψ2) = cos(ϕ1) sin(ϕ2) cos(ϕ3) cos(ψ1) + cos(ϕ2) cos(ϕ3) sin(ψ1) cos(ψ2)

− sin(ϕ3) sin(ψ1) sin(ψ2),

y4(ϕ, ψ1, ψ2) = cos(ϕ1) sin(ϕ2) sin(ϕ3) cos(ψ1) + cos(ϕ2) sin(ϕ3) sin(ψ1) cos(ψ2)

+ cos(ϕ3) sin(ψ1) sin(ψ2).

So the computations of the integrals of monomials from Lemma 4.12 containing at most 2

different indices remain the same as in the case n ≥ 6. The remaining formulas containing

monomials with possibly more than two different indices are I6, I7, I8, J4, J5, J7, J8, J9. The

arguments for I6 = I7 = I8 = J8 = J9 = 0 are the same as in the case n ≥ 6. The argument

for J4 is direct computation. We have:∫
T

z21z2z3dσ =

∫
4

cos(ϕ1)
4 sin(ϕ1)

4 cos(ϕ2)
2 sin(ϕ2)

2 cos(ϕ3)
2 cos(ψ1)

4V4(ϕ, ψ) dϕdψ

−
∫
4

cos(ϕ1)
2 sin(ϕ1)

4 cos(ϕ2)
2 sin(ϕ2)

2 cos(ϕ3)
2 cos(ψ1)

2 sin(ψ1)
2 cos(ψ2)

2V4(ϕ, ψ) dϕdψ.

By (4.8), the integration intervals for ϕ3 and ψ2 can be replaced by [0, π] instead of [0, 2π].

Since the integral is precisely as in the case n ≥ 6 with n = 4, the formula for J4 from

the case n ≥ 6 holds also when applied to n = 4. The argument for J5 following the same

formula as in the case n ≥ 6 for n = 4 is the following computation:

0 =

∫
T

(z1 + z2 + z3 + z4)
4 dσ =

4∑
i=1

∫
T

z4i dσ + 4
∑
i̸=j

∫
T

z3i zj dσ + 6
∑
i<j

∫
T

z2i z
2
j dσ

+ 12
∑

i,j,k pairw.
diff.,j<k

∫
T

z2i zjzk dσ + 24

∫
T

z1z2z3z4 dσ

= 4J1 + 4 · 2
(
4

2

)
J2 + 6

(
4

2

)
J3 + 12 · 4

(
3

2

)
J4 + 24J5.

Using J1, J2, J3, J4 as stated in Lemma 4.12 for n = 4, we get J5 =
1

9600
, which is also as

stated in Lemma 4.12 for n = 4.

It remains to do direct computations for the value of J7. In the notation of case n ≥ 6

we need to compute J
(1)
7 and J

(2)
7 :

J
(1)
7 =

∫
T

x22x
2
4y

2
1y

2
3 dσ =

∫
4

cos(ϕ1)
2 sin(ϕ1)

6 cos(ϕ2)
2 sin(ϕ2)

4 cos(ϕ3)
2 sin(ϕ3)

2·



CROSS-POSITIVE LINEAR MAPS, POSITIVE AND SUMS OF SQUARES POLYNOMIALS 31

· cos(ψ1)
4V4(ϕ, ψ) dϕdψ +

∫
4

sin(ϕ1)
6 cos(ϕ2)

4 sin(ϕ2)
2 cos(ϕ3)

2 sin(ϕ3)
2·

· cos(ψ1)
2 sin(ψ1)

2 cos(ψ2)
2V4(ϕ, ψ) dϕdψ +

∫
4

sin(ϕ1)
6 cos(ϕ2)

2 sin(ϕ2)
2·

· sin(ϕ3)
4 cos(ψ1)

2 sin(ψ1)
2 sin(ψ2)

2V4(ϕ, ψ) dϕdψ

J
(2)
7 =

∫
T

x22x3x4y
2
1y3y4 dσ =

∫
4

cos(ϕ1)
2 sin(ϕ1)

6 cos(ϕ2)
2 sin(ϕ2)

4 cos(ϕ3)
2 sin(ϕ3)

2·

· cos(ψ1)
4V4(ϕ, ψ) dϕdψ +

∫
4

sin(ϕ1)
6 cos(ϕ2)

4 sin(ϕ2)
2 cos(ϕ3)

2 sin(ϕ3)
2·

· cos(ψ1)
2 sin(ψ1)

2 cos(ψ2)
2V4(ϕ, ψ) dϕdψ −

∫
4

sin(ϕ1)
6 cos(ϕ2)

2 sin(ϕ2)
2·

· cos(ϕ3)
2 sin(ϕ3)

2 cos(ψ1)
2 sin(ψ1)

2 sin(ψ2)
2V4(ϕ, ψ) dϕdψ.

By (4.8), the integration intervals for ϕ3 and ψ2 can be replaced by [0, π] instead of [0, 2π].

The difference in the integrands in comparison to the case n ≥ 6 is that every summand

lacks the cos(ϕ4)
2 term, while some summands lack the cos(ψ3)

2 term. However, looking

at the computation for n ≥ 6 both correspond to the term Bn−5,0 = 1
n−3

. For n = 4

this term is equal to 1, so the final formula for J7 is the same as in the case n ≥ 6 when

applied to n = 4.

Case 4: n = 3. Note that the parameterizations of x1(ϕ), x2(ϕ) and y1(ϕ, ψ) are the

same as in the case n ≥ 6, while

x3(ϕ1, ϕ2) = sin(ϕ1) sin(ϕ2),

y2(ϕ1, ϕ2, ψ1) = cos(ϕ1) cos(ϕ2) cos(ψ1)− sin(ϕ2) sin(ψ1),

y3(ϕ1, ϕ2, ψ1) = cos(ϕ1) sin(ϕ2) cos(ψ1) + cos(ϕ2) sin(ψ1).

So the computations of the integrals of monomials from Lemma 4.12 containing one

different index remain the same as in the case n ≥ 6, i.e., I1 and J1 hold for n = 3. The

arguments for I6 = I7 = I8 = J8 = J9 = 0 are the same as in the case n ≥ 6. Assuming

I2 = −1
2
I1, the arguments proving formulas I3, I4, I5 are the same as in the case n ≥ 6. It

remains to establish the formulas for I2, J2, J3, J4, J6 by direct computations:

I2 =

∫
T

z1z2 dσ = −
∫
3

cos(ϕ1)
2 sin(ϕ1)

2 cos(ϕ2)
2 cos(ψ1)

2V3(ϕ1) dϕ1dϕ2dψ1,

J2 =

∫
T

z31z2 dσ = −
∫
3

cos(ϕ1)
4 sin(ϕ1)

4 cos(ϕ2)
2 cos(ψ1)

4V3(ϕ1) dϕ1dϕ2dψ1

J3 =

∫
T

z21z
2
2 dσ =

∫
3

cos(ϕ1)
4 sin(ϕ1)

4 cos(ϕ2)
4 cos(ψ1)

4V3(ϕ1) dϕ1dϕ2dψ1

+

∫
3

cos(ϕ1)
2 sin(ϕ1)

4 cos(ϕ2)
2 sin(ϕ2)

2 cos(ψ1)
2 sin(ψ1)

2V3(ϕ1) dϕ1dϕ2dψ1

J4 =

∫
T

z21z2z3dσ =

∫
3

cos(ϕ1)
4 sin(ϕ1)

4 cos(ϕ2)
2 sin(ϕ2)

2 cos(ψ1)
4·

· V3(ϕ1) dϕ1dϕ2dψ1 −
∫
3

cos(ϕ1)
2 sin(ϕ1)

4 cos(ϕ2)
2 sin(ϕ2)

2 cos(ψ1)
2 sin(ϕ1)

2·
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· V3(ϕ1) dϕ1dϕ2dψ1

J
(1)
6 =

∫
T

x42y
4
1 dσ =

∫
3

sin(ϕ1)
8 cos(ϕ2)

4 cos(ψ1)
4V3(ϕ1) dϕ1dϕ2dψ1

J
(2)
6 =

∫
T

x1x
3
2y

3
1y2 dσ = −

∫
3

cos(ϕ1)
2 sin(ϕ1)

6 cos(ϕ2)
4 cos(ψ1)

4V3(ϕ1) dϕ1dϕ2dψ1,

where we included only terms with nonzero integrals in the computations above. By

(4.8), the integration intervals for ϕ2 and ψ1 can be replaced by [0, π] instead of [0, 2π].

The integrands of I2, J2, J
(1)
6 , J

(2)
6 are the same as in the case n ≥ 6 and hence also the

corresponding formulas when applied to n = 3. The difference in the integrands of J3
and J4 in comparison with the case n ≥ 6 is that some summands lack at least one of the

terms cos(ϕ3)
2 or cos(ψ2)

2. Looking at the computation for n ≥ 6 these terms correspond

to the factor Bn−4,0 =
1

n−2
. For n = 3 this term is equal to 1. So the final formulas for J3

and J4 are the same as in the case n ≥ 6 when applied to n = 3. Hence, also the formula

for J6 is the same when applied to n = 3 by the argument as in the case n ≥ 6. ■

4.3.2. Proof of Proposition 4.10 for a symmetric bilinear form g. By the action g(x, y) =

g(U−1x, U−1y), U ∈ SO(n), we can assume without loss of generality that g is of the form

g(z) = d1z1 + d2z2 + . . .+ dnzn, di ∈ R.

Raising both sides of (4.7) to the power of 4, we have to prove that∫
T

(∑
i

dizi

)4

dσ ≤ 9

∫
T

(∑
i

dizi

)2

dσ

2

.(4.9)

We can assume that ∥g∥2 = 1:(∑
i

d2i −
2

n− 1

∑
i<j

didj

)
I1 = 1,(4.10)

where we used that I2 = − 1
n−1

I1 (see Lemma 4.12). Squaring (4.10) we also have∑
i

d4i −
1

n− 1

∑
i̸=j

4d3i dj + 2

(
1 +

2

(n− 1)2

)∑
i<j

d2i d
2
j

− 4

n− 1

(
1− 2

n− 1

) ∑
i,j,k

pairwise
different,

j<k

d2i djdk +
1

(n− 1)2

∑
i<j<k<l

24didjdkdl =
1

I21
.(4.11)

Using J2 = − 1
n−1

J1 (see Lemma 4.12), (4.10) and (4.11) in (4.9), the latter is equivalent

to:

0 ≤ 9−

(∑
i

d4i −
∑

i̸=j 4d
3
i dj

n− 1

)
J1 − 6

∑
i<j

d2i d
2
jJ3 − 12

∑
i,j,k

pairwise
different,

j<k

d2i djdkJ4

−
∑

i<j<k<l

24didjdkdl ·

{
J5 if n ≥ 4

0, if n = 3
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= 9− J1
I21

+
∑
i<j

d2i d
2
j

(
− 6J3 + 2J1 +

4

(n− 1)2
J1

)
+

∑
i,j,k

pairwise
different,

j<k

d2i djdk

(
− 12J4 −

4

n− 1
J1 +

8

(n− 1)2
J1

)

+
∑

i<j<k<l

24didjdkdl ·

{
−J5 + 1

(n−1)2
J1, if n ≥ 4

0, if n = 3

= 9− J1
I21

+
12

(n− 1)2n(n+ 1)(n+ 4)(n+ 6)(
(n− 3)

(∑
i<j

d2i d
2
j(n− 2)− 2

∑
i,j,k

pairwise
different,

j<k

d2i djdk

)
+ 12

∑
i<j<k<l

didjdkdl

)
.

Since
J1
I21

=
9n2(n+ 2)2

n(n+ 2)(n+ 4)(n+ 6)
=

9n(n+ 2)

(n+ 4)(n+ 6)
≤ 9,

it suffices to prove that

(n− 3)
(∑

i<j

d2i d
2
j(n− 2)− 2

∑
i,j,k

pairwise
different,

j<k

d2i djdk

)
+ 12

∑
i<j<k<l

didjdkdl ≥ 0.(4.12)

We will use induction on n to verify (4.12), starting with n = 3. Clearly, for n = 3 both

terms are 0 and we have equality in (4.12). Let us assume (4.12) holds for some n and prove

it for n+1. Note that in all inequalities (4.9)–(4.12), the validity for one tuple (d1, . . . , dn)

implies the validity for every tuple (d1 + a, . . . , dn + a), where a ∈ R. The reason for this

is that a(z1 + . . . + zn) ≡ 0 on T and hence
∫
T
(
∑

i(di + a)zi)
l dσ =

∫
T
(
∑

i dizi)
l dσ for

every l ∈ N. Using this and the symmetry on indices of coefficients we can assume that

(4.13) d1 ≥ d2 ≥ . . . ≥ dn ≥ dn+1 = 0.

Using (4.13) in (4.12) it remains to prove

(n− 2)
( ∑

i<j≤n

d2i d
2
j(n− 1)− 2

∑
i,j,k≤n
pairwise
different,

j<k

d2i djdk

)
+ 12

∑
i<j<k<l≤n

didjdkdl ≥ 0.(4.14)

We can rewrite (4.14) into

(n− 3)
( ∑

i<j≤n

d2i d
2
j(n− 2)− 2

∑
i,j,k≤n
pairwise
different,

j<k

d2i djdk

)
+ 12

∑
i<j<k<l≤n

didjdkdl

+ 2
( ∑

i<j≤n

d2i d
2
j(n− 2)−

∑
i,j,k≤n
pairwise
different,

j<k

d2i djdk

)
≥ 0.

(4.15)
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In (4.15), the first summand is nonnegative by the induction hypothesis, the second

summand by (4.13) and the third summand by Muirhead’s inequality [27]. Namely,

let (s1, s2, s3, . . . , sn) = (2, 2, 0, . . . , 0) and (t1, t2, t3, t4, . . . , tn) = (2, 1, 1, 0, . . . , 0). Note∑n
i=1 si =

∑n
i=1 ti and

∑k
i=1 si ≥

∑k
i=1 ti for k = 1, . . . , n−1. Since di ≥ 0 for i = 1, . . . , n,

[27] implies

(4.16)
∑
σ∈Sn

d
sσ(1)

1 d
sσ(2)

2 · · · dsσ(n)
n ≥

∑
σ∈Sn

d
tσ(1)

1 d
tσ(2)

2 · · · dtσ(n)
n ,

where Sn stands for the symmetric group on {1, 2, . . . , n}. Note (4.16) is equivalent to∑
i<j≤n

2(n− 2)! · d2i d2j ≥
∑

i,j,k≤n
pairwise
different,

j<k

2(n− 3)! · d2i djdk,

which implies the nonnegativity of the third summand in (4.15).

It remains to prove the moreover part of Proposition 4.10 for symmetric bilinear forms,

i.e., the constant
√
3 in the inequality ∥g∥4 ≤

√
3∥g∥2 is asymptotically sharp as n→ ∞.

For g(z) = 1√
I1
z1 note

∥g∥4 = 4

√
J1
I21

= 4

√
9n(n+ 2)

(n+ 4)(n+ 6)
∥g∥2.

As n→ ∞, we deduce that ∥g∥4 →
√
3∥g∥2. ■

4.3.3. Proof of Proposition 4.10 for a skew-symmetric bilinear form g. By the action

g(x, y) = g(U−1x, U−1y), U ∈ SO(n), we can assume without loss of generality (see [21,

Corollary 2.5.11] that g is of the form

g(w) = a12w12 + a34w34 + . . .+ a2⌊n
2
⌋−1,2⌊n

2
⌋w2⌊n

2
⌋−1,2⌊n

2
⌋, ai,i+1 ∈ R.

Raising both sides of (4.7) to the power of 4, we have to prove that

∫
T

( ∑
1≤i≤⌊n

2
⌋

a2i−1,2iw2i−1,2i

)4
dσ ≤ 6

∫
T

( ∑
1≤i≤⌊n

2
⌋

a2i−1,2iw2i−1,2i

)2
dσ

2

.(4.17)

We can assume that ∥g∥2 = 1:∫
T

( ∑
1≤i,j≤⌊n

2
⌋

a2i−1,2ia2j−1,2jw2i−1,2iw2j−1,2j

)
dσ

=
( ∑

1≤i≤⌊n
2
⌋

a22i−1,2i

)
I5 + 2

( ∑
1≤i<j≤⌊n

2
⌋,

a2i−1,2ia2j−1,2j

)
I8

=
( ∑

1≤i≤⌊n
2
⌋

a22i−1,2i

)
I5 = 1,

(4.18)

where we used Lemma 4.12. Squaring (4.18) we also have∑
1≤i≤⌊n

2
⌋

a42i−1,2i + 2
∑

1≤i<j≤⌊n
2
⌋

a22i−1,2ia
2
2j−1,2j =

1

I25
.(4.19)



CROSS-POSITIVE LINEAR MAPS, POSITIVE AND SUMS OF SQUARES POLYNOMIALS 35

Computing the left-hand side of (4.17) using Lemma 4.12 we get∫
T

( ∑
1≤i,j,k,l≤⌊n

2
⌋

a2i−1,2ia2j−1,2ja2k−1,2ka2l−1,2lw2i−1,2iw2j−1,2jw2k−1,2kw2l−1,2l

)
dσ

=
∑

1≤i≤⌊n
2
⌋

a42i−1,2iJ6 + 6
∑

1≤i<j≤⌊n
2
⌋

a22i−1,2ia
2
2j−1,2jJ7

=
( ∑

1≤i≤⌊n
2
⌋

a42i−1,2i +
∑

1≤i<j≤⌊n
2
⌋

a22i−1,2ia
2
2j−1,2j

)
J6.

,(4.20)

In the computation above we used the fact that all integrals∫
T

w2i−1,2iw2j−1,2jw2k−1,2kw2l−1,2l dσ,

where at least one index appears an odd number of times, are equal to 0. Using (4.18),

(4.19) and (4.20) in (4.17), the latter is equivalent to:

0 ≤ 6− J6
I25

+
∑

1≤i<j≤⌊n
2
⌋

a22i−1,2ia
2
2j−1,2jJ6.(4.21)

Since
J6
I25

=
24(n− 1)2n2

4(n− 1)n(n+ 1)(n+ 2)
=

6(n− 1)n

(n+ 1)(n+ 2)
≤ 6,

the inequality (4.21) clearly holds.

It remains to prove the moreover part of Proposition 4.10 for skew-symmetric bilinear

forms, i.e., the constant 4
√
6 in the inequality ∥g∥4 ≤ 4

√
6∥g∥2 is asymptotically sharp as

n→ ∞. For g(w) = 1√
I5
w12, note

∥g∥4 = 4

√
J6
I25

= 4

√
6(n− 1)n

(n+ 1)(n+ 2)
∥g∥2.

As n→ ∞, we deduce that ∥g∥4 → 4
√
6∥g∥2. ■

4.3.4. Proof of Proposition 4.10 for a general bilinear form g. Let g(x, y) = xTAy+ I1,1 ∈
R[x, y]1,1/I1,1 be a bilinear form, where A ∈ Rn×n. We can write

g(x, y) =
(xT (A+ AT )y

2
+ I1,1

)
︸ ︷︷ ︸

gs(x,y)

+
(xT (A− AT )y

2
+ I1,1

)
︸ ︷︷ ︸

ga(x,y)

,

where gs(x, y) and ga(x, y) are symmetric and skew-symmetric bilinear forms, respectively.

We can write gs and ga as follows:

gs(z) =
n∑

i=1

aizi︸ ︷︷ ︸
gs,1

+
∑

1≤i<j≤n

bij(zij + zji)︸ ︷︷ ︸
gs,2

, ai ∈ R, bij ∈ R,

ga(z) =
∑

1≤i<j≤n

cij(zij − zji), cij ∈ R.

Claim. ⟨gs, ga⟩ :=
∫
T
gsga dσ = 0.
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Proof of Claim. Since gs = gs,1 + gs,2, it suffices to prove that

⟨gs,1, ga⟩ = ⟨gs,2, ga⟩ = 0.

The fact that ⟨gs,1, ga⟩ = 0 follows by observing that ⟨gs,1, ga⟩ is a weighted sum of inner

products of the form

⟨zi, (zjk − zkj)⟩ =
∫
T

ziizjkdσ −
∫
T

ziizkjdσ.

But the values of both terms are equal to 0 by Lemma 4.12, since at least one of the

indices i, j, k occurs an odd number of times.

The fact that ⟨gs,2, ga⟩ = 0 follows by noticing that ⟨gs,2, ga⟩ is a weighted sum of inner

products of the form

⟨(zij + zji), (zkl − zlk)⟩ = ⟨zij, zkl⟩ − ⟨zij, zlk⟩+ ⟨zji, zkl⟩ − ⟨zji, zlk⟩

=

∫
T

zijzkl dσ −
∫
T

zijzlk dσ +

∫
T

zjizkl dσ −
∫
T

zjizlk dσ.

If (i, j) ̸= (k, l), then in zijzkl, zijzlk, zjizkl, zjizlk at least one of the indices i, j, k, l occurs

an odd number of times and hence the corresponding integral is equal to 0 by Lemma

4.12. If (i, j) = (k, l), then zijzkl = z2ij, zijzlk = zijzji, zjizkl = zjizij, zjizlk = z2ji, and

hence

⟨(zij + zji), (zij − zji)⟩ =
∫
T

z2ij dσ −
∫
T

z2ji dσ = 0.

This proves the Claim. □

We have

∥g∥4 = ∥gs + ga∥4 ≤ ∥gs∥4 + ∥ga∥4 ≤
√
3∥gs∥2 + 4

√
6∥ga∥2

≤
√
3
(
∥gs∥2 + ∥ga∥2

)
≤

√
6∥g∥2,

where in the first inequality we used the triangle inequality for ∥ · ∥4, in the second the

statement of Proposition 4.10 for symmetric (resp. skew-symmetric) bilinear forms, in the

third 4
√
6 <

√
3 and in the last ∥gs∥2 + ∥ga∥2 ≤

√
2∥g∥2. Indeed, by the Claim

(4.22) ∥g∥2 =
√

∥ga∥22 + ∥gs∥22.

Further, (
∥ga∥2 + ∥gs∥2

)2
= ∥ga∥22 + 2∥ga∥∥gs∥+ ∥gs∥22 ≤ 2

(
∥ga∥22 + ∥gs∥22

)
,(4.23)

where we used inequality between the arithmetic mean and the geometric mean. Using

(4.22) in (4.23) gives ∥gs∥2 + ∥ga∥2 ≤
√
2∥g∥2. ■

5. Algorithms and Examples

Each biquadratic form f ∈ R[x, y]2,2 that is modulo I a nonnegative polynomial but not

a sum of squares yields an example of a “proper” cross-positive map A :Mn(R) →Mn(R),
cf. Proposition 2.6. In this section we specialize the Blekherman-Smith-Velasco procedure

([6, Procedure 3.3]; see also [22] for a specialization in the context of positive linear maps)

to produce many such examples from random input data. Throughout this section we fix

n ≥ 2.
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Observe that biquadratic forms are in bijective correspondence with quadratic forms

on the Segre variety (cf. [6, Example 5.6] or [41, Lemma 3.13]). Let Pn−1 denote the

complex (n − 1)-dimensional projective space and let σn : Pn−1 × Pn−1 → Pn2−1, ([x1 :

. . . : xn], [y1 : . . . : yn]) 7→ [x1y1 : x1y2 : . . . : x1yn : . . . : xnyn] be the Segre em-

bedding. Its image σn(Pn−1 × Pn−1) = VC(In) is the complex zero locus of the ideal

In ⊆ R[z] := R[z11, z12, . . . , z1n, . . . , znn] generated by all 2 × 2 minors of the matrix

(zij)i,j. The complexification ICn ⊆ C[z] of the ideal In is radical [18, p. 98] and thus

consists of all polynomials vanishing on σn(Pn−1 × Pn−1). It is also well known that

σn(Pn−1 × Pn−1) is smooth [18, p. 184-185] and of degree
(
2n−2
n−1

)
[18, p. 233].

Let J ⊆ R[z] be the ideal generated by
∑n

i=1 zii, let Jn = In + J , and let JC and JC
n be

complexifications of J and Jn in C[z].

Lemma 5.1. The ideal JC
n is radical.

Proof. We first show that JC
n /I

C
n is a radical ideal in C[z]/ICn . Let f ∈ C[z]/ICn satisfy

f 2 ∈ JC
n /I

C
n . Since ICn is radical ideal and VC(In) is the image of the Segre embedding,

the Segre embedding induces an injective homomorphism between coordinate rings σ̃#
n :

C[z]/ICn → C[x, y] sending zij + ICn 7→ xiyj. Clearly, σ̃#
n (J

C
n /I

C
n ) ⊆ IC, so

(
σ̃#
n (f)

)2
=

σ̃#
n (f

2) ∈ IC. Since IC is a prime ideal in C[x, y], it follows that σ̃#
n (f) ∈ IC. Let

(5.1) σ̃#
n (f) = g ·

n∑
i=1

xiyi

for some g ∈ C[x, y]. Since σ̃#
n (f) lies in the image of σ̃#

n , each of its monomials is of

bidegree (d, d) for some d (which depends on the monomial). Comparing the monomials in

(5.1) we see that the same holds for g, i.e., g ∈ im σ̃#
n . Let h ∈ C[z]/ICn satisfy σ̃#

n (h) = g.

Then (5.1) implies σ̃#
n

(
f − h · (

∑n
i=1 zii + ICn )

)
= 0, and injectivity of σ̃#

n implies that

f = h · (
∑

i zii + ICn ) ∈ JC
n /I

C
n . So, J

C
n /I

C
n is radical.

Finally, C[z]/ICn is a domain, and JC
n /I

C
n is a radical ideal. It follows that(

C[z]/ICn
)
/
(
JC
n /I

C
n

) ∼= C[z]/JC
n

is reduced (without nilpotents), hence JC
n is a radical ideal in C[z]. ■

Since JC
n is the homogeneous ideal of all polynomials that vanish on VC(Jn), the quotient

ring C[z]/JC
n is the coordinate ring C[VC(Jn)] of the variety VC(Jn). The proof of the above

lemma shows that
(
σ̃#
n

)−1
(IC) ⊆ JC

n /I
C
n , and the converse inclusion is obvious, therefore

there is an induced injective homomorphism σ#
n : C[z]/JC

n → C[x, y]/IC satisfying σ#
n (zij+

JC
n ) = xiyj + IC for 1 ≤ i, j ≤ n. The restriction of this homomorphism to the real

quadratic forms is then a (linear) bijective correspondence between quadratic forms from

R[z]/Jn and biforms from R[x, y]2,2 modulo I.

Recall from Lemma 2.4 that a biform f ∈ R[x, y]2,2 is a sum of squares modulo I if and

only if it is a sum of squares of biforms from R[x, y]1,1 modulo I.

Lemma 5.2. A biform f ∈ R[x, y]2,2 of bidegree (2,2) is a sum of squares modulo I if

and only if the quadratic form σ#
n

−1
(f) ∈ R[z]/Jn is a sum of squares.

Proof. To prove the implication (⇒) let

(5.2) f =

j0∑
j=1

f 2
j + g ·

n∑
i=1

xiyi
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where j0 ∈ N, each fj ∈ R[x, y]1,1 and g ∈ R[x, y]1,1. Note that all fj and g are in the

image of σ#
n . Hence,

σ#
n

−1
(f) =

j0∑
j=1

σ#
n

−1
(fj)

2 + σ#
n

−1
(g) ·

n∑
i=1

zii

is a sum of squares in R[z]/Jn.
It remains to prove the implication (⇐). Since f is in the image of σ#

n , it follows from

σ#
n

−1
(f) =

j1∑
j=1

[hj]
2,

where j1 ∈ N and [hi] is the equivalence class of hj ∈ R[z] in R[z]/Jn, that

f =

j1∑
j=1

σ#
n ([hj])

2

is a sum of squares in R[x, y]/I which proves (⇐). ■

Proposition 5.3. The variety VC(Jn) is smooth and is a nondegenerate subvariety of

VC (
∑n

i=1 zii), dimVC(Jn) = 2n − 3, its codimension in the hyperplane VC (
∑n

i=1 zii) is

(n− 1)2, and the degree of VC(Jn) is
(
2n−2
n−1

)
.

Proof. Note that VC(Jn) is (the projectivization of) the variety of all n × n matrices of

rank 1 and trace 0. Suppose it is contained in a hyperplane of VC(
∑n

i=1 zii). Then there

exists a nonzero traceless matrix M such that tr(xyTM) = yTMx = 0 for all x, y ∈ Cn

satisfying yTx = 0. Taking x = ei, y = ej for arbitrary distinct i and j we get that M

is diagonal. Furthermore, taking x = ei + ej, y = ei − ej for distinct i and j, we get that

M is a scalar matrix. Since trM = 0, it follows that M = 0, which is a contradiction.

Therefore VC(Jn) is nondegenerate.

Next, we compute the Hilbert polynomial for VC(Jn). We follow the proof of the anal-

ogous result for the Segre variety in [18, p. 234]. The space of polynomials of degree d

in C[z]/JC
n is isomorphic, via the restriction of the homomorphism σ#

n , to the space of

polynomials of bidegree (d, d) in C[x, y]/IC. Its dimension is therefore(
n+ d− 1

n− 1

)2

−
(
n+ d− 2

n− 1

)2

=

(
(d+ 1) · · · (n+ d− 2)

(n− 1)!

)2

(n− 1)(n+ 2d− 1).

This is a polynomial in d with the leading term 2n−2
((n−1)!)2

d2n−3, therefore dimVC(Jn) = 2n−3

and deg VC(Jn) = (2n−2)(2n−3)!
((n−1)!)2

=
(
2n−2
n−1

)
. As VC(

∑n
i=1 zii) is a hyperplane in Pn2−1, the

result on codimension also follows.

It remains to prove smoothness. Note that the group GLn acts on the variety VC(Jn)

of rank 1 traceless matrices by conjugation. Using the Jordan normal form we see that

the action is transitive, so it suffices to prove that e1e
T
2 is a smooth point of VC(Jn). To

show this we use the Jacobian criterion. Let Jac(e1e
T
2 ) be the Jacobian matrix for VC(Jn)

at e1e
T
2 . The generators of the ideal JC

n are zijzkl − zilzkj where i ̸= k and j ̸= l, and∑n
i=1 zii. The gradient of zijzkl − zilzkj in e1e

T
2 is zero if i ̸= 1 and k ̸= 1 or if j ̸= 2

and l ̸= 2. On the other hand, the gradient of z12zkl − z1lzk2 in e1e
T
2 is eke

T
l for k ̸= 1

and l ̸= 2, and the gradient of
∑n

i=1 zii is
∑n

i=1 eie
T
i . Clearly,

∑n
i=1 eie

T
i ∈ Cn2

is not a

linear combination of eke
T
l with k ̸= 1 and l ̸= 2, so rank Jac(e1e

T
2 ) = (n − 1)2 + 1 and
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dimker Jac(e1e
T
2 ) = 2n − 2. It follows that the (projective) tangent space to VC(Jn) at

e1e
T
2 is (2n− 3)-dimensional, which shows that e1e

T
2 is smooth. ■

Corollary 5.4. For n ≥ 3 the variety VC(Jn) is not of minimal degree, i.e., deg VC(Jn) >

1 + codimVC(Jn).

We write

Pos(V (Jn)) = {f ∈ R[z]/Jn : f(z) ≥ 0 for all z ∈ V (Jn)} ,

Sos(V (Jn)) =

{
f ∈ R[z]/Jn : f =

k∑
i=1

f 2
i for some k ∈ N and fi ∈ R[z]/Jn

}
,

for the cone of nonnegative polynomials and the cone of sums of squares from R[z]/Jn,
respectively.

For n ≥ 3, [6, Procedure 3.3] yields an explicit construction of nonnegative quadratic

forms from R[z]/Jn that are not sums of squares forms starting from random input data.

We now turn this procedure, specialized to our context, into a probabilistic (Las Vegas)

algorithm.

Algorithm 5.5. Let n ≥ 3, d = 2n − 3 = dimV (Jn), and e = (n − 1)2 = codimV (Jn).

To obtain a quadratic form in Pos(V (Jn)) \ Sos(V (Jn)) proceed as follows:

Step 1 Construction of linear forms h0, . . . , hd.

Step 1.1 Choose e+1 random pairwise orthogonal x(i) ∈ Rn and y(i) ∈ Rn and calculate

their Kronecker tensor products z(i) = x(i) ⊗ y(i) ∈ Rn2
.

Step 1.2 Choose d random vectors v1, . . . vd ∈ Rn2
from the kernel of the matrix(

z(1) . . . z(e+1)
)∗
,

and form the linear forms

hj(z) = v∗j · z ∈ R[z] for j = 1, . . . , d.

If the number of points in the intersection ker(
(
v1 . . . vd

)∗
)
⋂
V (Jn) is not

equal to deg(VC(Jn)) =
(
2n−2
n−1

)
or if the points in the intersection are not in

linearly general position, then repeat Step 1.1.

Step 1.3 Choose a random vector v0 from the kernel of the matrix(
z(1) . . . z(e)

)∗
.

(Note z(e+1) is omitted.) The corresponding linear form h0 is

h0(z) = v∗0 · z ∈ R[z].

If h0 intersects h1, . . ., hd in more than e points on V (Jn), then repeat Step 1.3.

Let a be the ideal in R[z]/Jn generated by h0, h1, . . . , hd.

Step 2 Construction of a quadratic form f ∈ (R[z]/Jn) \ a2.
Step 2.1 Let g1(z), . . . , g(n2)

2(z) be the generators of the ideal In, i.e., the 2× 2 minors

zijzkl − zilzkj for 1 ≤ i < k ≤ n, 1 ≤ j < l ≤ n. Set g0 =
∑n

i=1 zii. For

each i = 1, . . . , e compute a basis {w(i)
1 , . . . , w

(i)
d+1} ⊆ Rn2

of the kernel of the
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matrix  ∇g0(z(i))∗
...

∇g
(n2)

2(z(i))∗

 .

(Note that this kernel is always (d+ 1)-dimensional, since the variety VC(Jn)

is d-dimensional (in Pn2−1) and smooth.)

Step 2.2 Choose a random vector v ∈ Rn4
from the intersection of the kernels of the

matrices(
z(i) ⊗ w

(i)
1 · · · z(i) ⊗ w

(i)
d+1

)∗
for i = 1, . . . , e

with the kernels of the matrices(
ei ⊗ ej − ej ⊗ ei

)∗
for 1 ≤ i < j ≤ n2.

(The latter condition ensures v is a symmetric tensor in Rn2 ⊗Rn2
. Note also

the point z(e+1) is omitted.)

For 1 ≤ i, k ≤ n and 1 ≤ j, l ≤ n denote

Eijkl = (ei ⊗ ej)⊗ (ek ⊗ el) + (ek ⊗ el)⊗ (ei ⊗ ej) ∈ Rn4

.

If v is in

span
(
{vi ⊗ vj + vj ⊗ vi : 0 ≤ i ≤ j ≤ d}⋃
{Eijkl − Eilkj; 1 ≤ i < k ≤ n, 1 ≤ j < l ≤ n}⋃{

n∑
i=1

((ei ⊗ ei)⊗ (ej ⊗ ek) + (ej ⊗ ek)⊗ (ei ⊗ ei)); 1 ≤ j, k ≤ n

})
,

then repeat Step 2.2. Otherwise the quadratic form

f(z) = v∗ · (z⊗ z) ∈ R[z]/Jn,

does not belong to a2.

Step 3 Construction of a quadratic form in R[z]/Jn that is nonnegative but not sos.

Calculate the greatest δ0 > 0 such that δ0f +
∑d

i=0 h
2
i is nonnegative on V (Jn).

Then for every 0 < δ ≤ δ0 the quadratic form

(5.3) Fδ = δf +
d∑

i=0

h2i

is nonnegative on V (Jn) but is not a sum of squares.

5.1. Correctness of Algorithm 5.5. The main ingredient in the proof is the theory

of minimal degree varieties as developed in [6]. Since VC(Jn) is not of minimal degree

for n ≥ 3 by Proposition 5.3, Sos(V (Jn)) ⊊ Pos(V (Jn)). Hence results of [6, Section 3]

apply; their Procedure 3.3 adapted to our set-up is Algorithm 5.5. While Step 1 and

Step 3 follow immediately from the corresponding steps in [6, Procedure 3.3], we note

for Step 2 that “vanishing to the second order at z(i)” means f(z(i)) = 0 and ∇f(z(i)) ∈
span

{
∇gj(z(i)) : 0 ≤ j ≤

(
n
2

)2}
. Since f ̸∈ a2, the quadratic form δf +

∑d
i=0 h

2
i is never

a sum of squares, while it is nonnegative on V (Jn) for sufficiently small δ > 0 by the
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positive definiteness of the Hessian of
∑d

i=0 h
2
i at its real zeros z(1), . . . , z(e), see the proof

of the correctness of Procedure 3.3 in [6].

5.2. Towards an implementation. Note that the verification in Step 1.2 is computa-

tionally difficult (but can be performed using Gröbner basis if n is small). However, since

all steps in the algorithm are performed with random data, all the generic conditions from

[6, Procedure 3.3] are satisfied with probability 1. Hence, by omitting the verification in

Step 1.2, Algorithm 5.5 becomes a Monte Carlo algorithm and yields a correct output

with probability 1. Step 1 and Step 2 are easily implemented as they only require linear

algebra. On the other hand, Step 3 is computationally difficult; testing nonnegativity

even of low degree polynomials is NP-hard, cf. [26].

Several algorithms are available to check nonnegativity of polynomials. Those using

symbolic methods such as quantifier elimination or cylindrical algebraic decomposition

only work for small problem sizes. We employ numerical methods based on the Posi-

tivstellensatz [8]. To reduce the number of equality constraints, we rewrite the quadratic

form Fδ(z) from (5.3) into x, y variables, obtaining a biquadratic form we denote by a

slight abuse of notation by Fδ(x, y).

Proposition 5.6. For f ∈ R[x, y] the following are equivalent:

(i) f ≥ 0 on V (I);

(ii) there exist sum of squares σ1, σ2 ∈ R[x, y] such that

(5.4) σ1f − σ2 ∈ I and σ1 ̸≡ 0 on V (I).

Proof. Assume (ii) holds. From (5.4) it follows that f ≥ 0 on S = V (I) \ V (σ1). Since

V (I) is irreducible, S is Zariski dense in V (I). Since S is also open in V (I), it is dense in

V (I) also in the Euclidean topology and hence (i) holds. Conversely, suppose (i) holds.

By the Positivstellensatz (e.g. [8, Corollary 4.4.3]), there is m ∈ N and sums of squares

σ1, σ2 such that fσ1 − σ2 − f 2m ∈ I. Assume σ1 = 0 on V (I), then σ1 ∈ I since I is the

vanishing ideal of V (I) (see §2), whence σ2 + f 2m ∈ I. Thus, again by the real radical

property of I, f ∈ I. In this case we may simply pick σ1 = 1 and σ2 = 0. ■

We apply Proposition 5.6 to Fδ from (5.3) to search for a δ > 0 making Fδ(x, y)

nonnegative on V (I). Let δ > 0 be fixed and suppose the degree of σ1 is ≤ 2d. Then

the ideal constraint in (5.4) immediately converts into a linear matrix inequality and thus

feeds into a semidefinite program (SDP) that can be solved with standard solvers [43].

(Here homogeneity of Fδ and I enter. Both σj can be assumed to be homogeneous, and

deg σ2 ≤ 2d + 4.) To implement the non-equality constraint in (5.4), we pick a random

point (x0, y0) ∈ V (I) and set σ1(x0, y0) = 1. Our implementation uses bisection, sets

d = 1 and starts with, say, δ = 1. Then solve the described feasibility SDP. If it has

a solution, stop. If not, replace δ by δ/2 and try again. If no solution has been found

with δ greater than some prescribed tolerance, increase d, and reset δ = 1. Then repeat

the process. By Proposition 5.6 and the construction of Fδ the algorithm will eventually

produce a certificate of nonnegativity for some δ > 0. We refer to [4] for a numerical

comparison of polynomial optimization choices for a similar problem.

As in [22] (see also [4]) it might be possible to apply standard techniques [32, 9] to turn

obtained numerical sum of squares certificates into symbolic ones.
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5.3. Example. In this section we give an explicit numerical example of a “proper” cross-

positive map Φ̃ : M3(R) → M3(R) built using our ad-hoc implementation of Algorithm

5.5 in Wolfram Mathematica. Working with rational random data as per Algorithm 5.5

quickly leads to very large denominators with bad conditioning, necessitating working

with floating point numbers. Let

pΦ(x, y) = 75.356 x21y
2
2 + 35.3881 x21y

2
3 − 65.2694 x21y2y3 + 89.2972 x2x1y

2
2

− 19.9103 x3x1y
2
2 + 96.593 x2x1y

2
3 − 47.7404 x3x1y

2
3 − 80.1036 x2x1y2y3

+ 56.4942 x3x1y2y3 + 37.6343 x22y1 + 6.96833 x23y
2
1 + 17.7278 x2x3y

2
1

+ 38.8145 x22y
2
2 + 23.0293 x23y

2
2 + 37.1699 x2x3y

2
2 + 66.6118 x22y

2
3

+ 22.9845 x23y
2
3 − 66.1642 x2x3y

2
3 − 2.03483 x22y1y2 + 25.0232 x23y1y2

+ 35.2335 x2x3y1y2 + 1.70127 x22y1y3 − 32.1772 x23y1y3 − 33.3246 x2x3y1y3

+ 9.37496 x22y2y3 − 41.4656 x23y2y3 + 11.4857 x2x3y2y3.

The corresponding linear map Φ : S3(R) → S3(R) is as follows:

Φ(E11) =

0. 0. 0.

0. 75.356 −32.6347

0. −32.6347 35.3881

 , Φ(E22) =

 37.6343 −1.01742 0.850636

−1.01742 38.8145 4.68748

0.850636 4.68748 66.6118

 ,

Φ(E33) =

 6.96833 12.5116 −16.0886

12.5116 23.0293 −20.7328

−16.0886 −20.7328 22.9845

 , Φ(E12 + E21) =

0. 0. 0.

0. 89.2972 −40.0518

0. −40.0518 96.593

 ,

Φ(E13+E31) =

0. 0. 0.

0. −19.9103 28.2471

0. 28.2471 −47.7404

 , Φ(E23+E32) =

 17.7278 17.6168 −16.6623

17.6168 37.1699 5.74284

−16.6623 5.74284 −66.1642

 .

The polynomial pΦ is nonnegative on V (I) but not a sum of squares modulo I. Equiva-

lently, an arbitrary ∗-linear extension Φ̃ :M3(R) →M3(R) of Φ is a proper cross-positive

map, e.g., Φ̃ is trivial on antisymmetric matrices. This example was produced using

Algorithm 5.5 starting with the points
x(1) y(1)

x(2) y(2)

x(3) y(3)

x(4) y(4)

x(5) y(5)

 =


−3

2
1 3

2
−21

2
−3

2
−19

2
1
3

0 −3 −24 9 −8
3

1 −1 −2
3

14
3

−2
3

8

2 −1 1
2

−4 9
2

25

−3
2

3
2

−3
2

3
2

3
2

0

 ,

where each x(i), y(i) ∈ R3.

Acknowledgments

The authors thank the anonymous referees and the editors for their careful reading and

insightful comments that have greatly improved this manuscript.



CROSS-POSITIVE LINEAR MAPS, POSITIVE AND SUMS OF SQUARES POLYNOMIALS 43

References

[1] W. Arveson, Quantum channels that preserve entanglement, Math. Ann. 343 (2009) 757–771.

[2] A. Barvinok, Estimating L∞ Norms by L2k Norms for Functions on Orbits, Found. Comput.

Math. 2 (2002) 393–412.

[3] A. Barvinok, G. Blekherman, Convex geometry of orbits, Combinatorial and Computational

Geometry, MSRI Publications 52 (2005) 51–77.

[4] A. Bhardwaj, A practical approach to SOS relaxations for detecting quantum entanglement, J.

Optim. Theory Appl. 198 (2023) 869–891.

[5] G. Blekherman, There are significantly more nonnegative polynomials than sums of squares, Israel

J. Math. 153 (2006) 355-380.

[6] G. Blekherman, G.G. Smith, M. Velasco, Sums of Squares and Varieties of Minimal Degree, J.

Amer. Math. Soc. 29 (2016) 893–913.

[7] L.E. Blumenson, A Derivation of n-Dimensional Spherical Coordinates, Amer. Math. Monthly

67(1) (1960) 63–66.

[8] J. Bochnak, M. Coste, M.-F. Roy, Real algebraic geometry, Ergebnisse der Mathematik und ihrer

Grenzgebiete 3, Springer, 1998.

[9] K. Cafuta, I. Klep, J. Povh: Rational sums of hermitian squares of free noncommutative polyno-

mials, Ars Math. Contemp. 9 (2015) 243–259.

[10] Y. Chikuse: Distributions of orientations on Stiefel manifolds, Journal of Multivariate Analysis,

33 (1990) 247–264.

[11] Y. Chikuse: Statistics on special manifolds, Lecture notes in statistics, Springer, 2003.

[12] M.-D. Choi, Completely positive linear maps on complex matrices, Linear Algebra Appl. 10 (1975)

285–290.

[13] C. Cuchiero, D. Filipović, E. Mayerhofer, J. Teichmann, Affine processes on positive semidefinite

matrices, Ann. Appl. Probab. 21 (2011), 397–463.

[14] C. Cuchiero, M. Keller-Ressel, E. Mayerhofer, J. Teichmann, Affine processes on symmetric

cones, J. Theor. Prob. 29 (2016), 359–422.

[15] T. Damm, Positive groups on Hn are completely positive, Linear Algebra Appl. 393 (2004),

127–137.
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