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ABSTRACT. Quantum Max Cut (QMC) problem for systems of qubits is an example of
a 2-local Hamiltonian problem, and a prominent paradigm in computational complexity
theory. This paper investigates the algebraic structure of a higher-dimensional analog of
the QMC problem for systems of qudits. The Quantum Max d-Cut (d-QMC) problem
asks for the largest eigenvalue of a Hamiltonian on a graph with n vertices whose edges
correspond to swap operators acting on (C?)®". The algebra generated by the swap
operators is identified as a quotient of a free algebra modulo symmetric group relations
and a single additional relation of degree d. This presentation leads to a tailored hi-
erarchy of semidefinite programs, leveraging noncommutative polynomial optimization
(NPO) methods, that converges to the solution of the d-QMC problem. For a large class
of complete bipartite graphs, exact solutions for the d-QMC problem are derived using
the representation theory of symmetric groups and Littlewood-Richardson coefficients.
Lastly, the paper addresses a refined d-QMC problem focused on finding the largest eigen-
value within each isotypic component (irreducible block) of the graph Hamiltonian. It is
shown that the spectrum of the star graph Hamiltonian distinguishes between isotypic
components of the 3-QMC problem. For general d, low-degree relations for separating
isotypic components are presented, enabling adaptation of the global NPO hierarchy to
efficiently compute the largest eigenvalue in each isotypic component.
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1. INTRODUCTION

The local Hamiltonian problem is a renowned problem in quantum computational com-
plexity theory. It involves determining the largest (or smallest) eigenvalue of a given self-
adjoint matrix H. The input matrix H acts on a space of n qubits and is hence of size
2™ x 2™, It is expressed as a sum of local terms, i.e., for a chosen k < n,

Here each Hg acts nontrivially only on a subset (of S) of at most k qubits. Such an H is
called a k-local Hamiltonian.

The general k-local Hamiltonian problem is hard to solve; in fact, it belongs to the
Quantum Merlin Arthur (QMA)-hard complexity class [KSV02, KKRO06], which is a
quantum analog of the NP-hard class. Hence, it is easier to approach by considering
its specific instances, either by computing exact arithmetic solutions [LM62] or designing
efficient (polynomial-time) high-precision algorithms to approximate the largest eigen-
value [LVV15]. Additional work was done on approximating the maximum eigenvalue up
to a constant factor [GK12, BH13, BGKT19, HM17], and exploring hardness of computing
ground space properties [GH24-+].

We investigate generalizations of the Quantum Max Cut (QMC) problem, which is a
special instance of the 2-local Hamiltonian problem, and was named by Gharibian and
Parekh [GP19] as a quantum analog of the classical Max Cut problem for the Ising model
(Section 1.1). The QMC problem naturally arises in physics as it seeks the ground state
energy of the anti-ferromagnetic Heisenberg model for a system of interacting particles.
The latter is used to describe magnetic properties of insular crystals, under the assumption
that only the interactions of neighbor electrons in a lattice are significant (2-locality)
[Aue94, BDZ08]. The QMC problem has recently become popular within the field of
computational complexity theory. It is a simple prototype of a QMA-complete problem
[PM17] and can hence be used for designing approximation algorithms to solve other
QMA-hard problems [AMG20, PT21, PT22+, Lee22, Kin23]. Arithmetic solutions to
the QMC problem are known for certain families of graphs, such as complete bipartite
graphs [LM62] and one-dimensional chains [LM16]. More recently, second order cone
relaxations of the QMC problem capable of providing approximations for large graphs
were introduced [HTPG24+], and approximation algorithms tailored to triangle-free and
bipartite graphs were designed and analyzed [GSS25+].

The main objects used to define the QMC Hamiltonian are the Pauli matrices

. 0 1 0 —i 1 0
(Pauli) O'X_|:1 O}’ Jy—L O}’ JZ—[O _1].

Together with the identity o; := I, they form a basis for Ms(C). For fixed n let
0-‘];:[/:[2®®]2®0-W®12®®]2 € MQ(C)®HZM2n(C)
—— ——

k—1 n—k

with W € {X,Y, Z} and k € N. Now
(11) {0-‘1/(/10-12/1/2 o 'O-IT/an | Wj € {IuX7 Y’ Z}}
is a basis for M. (C).
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A QMC Hamiltonian pertains to a given graph G on say n vertices. We denote by
V(G) the vertex set of G and by E(G) the edge set of G.

Definition 1.1. Let G be a graph on n vertices and edge weights {w;; | (¢,7) € E(G)}.
The Quantum Max Cut (QMC) Hamiltonian is defined as

(HG) HG = Z Wij (I — U&Ug( — O';l/O'{/ — O'iZO'j) € MQn ((C)Sa.

(.9)€E(G)
The Quantum Max Cut (QMC) problem is about finding the largest eigenvalue of the
QMC Hamiltonian Hg; that is, the ground state energy of —Hg.

1.1. Connection to the classical Max Cut. The QMC problem is named after the
classical Max Cut (MC) problem [BPT'13] of partitioning the vertices of a given graph into
two sets such that the number or weight of the edges between the two sets is maximized.
Equivalently, if the given graph G has edge set E(G) and edge weights w;; > 0, maximize

1 — 2ors
P
(4,5)€E(G)
over all possible evaluations at x; € {£1}. Note that the MC problem is equivalent to the
“diagonal” modification of the QMC problem, where the o%c”% and o0 terms in (/)
are dropped. Alternatively, while the QMC problem seeks the ground state energy of the
Heisenberg XXX model, classical MC problem seeks the ground state energy of the Ising
model (without an external field).

Solving the MC problem in general is NP-hard, thus several approximation algo-
rithms were developed. The most famous approximation algorithm is by Goemans and
Williamson [GW95], and is based on semidefinite programming (SDP) [BPT13]. It can
be understood as the first level of Lasserre’s Moment-SOS (Sum-of-Squares) hierarchy of
SDP relaxations [Lse(01] (see also [Lau09, HKL20, Nie23]) that give a converging sequence
of upper bounds to the exact solution of the MC problem. Raghavendra [Rag08, Rag09]
showed, assuming the Unique Games Conjecture of Khot [[Kho02], that no polynomial-

time algorithm for the MC problem is better than the Goemans-Williamson algorithm
(unless P=NP).

1.2. Quantum Max Cut. To tackle the QMC problem, the algebraic structure of the
QMC Hamiltonian is investigated in [BCEHK24, TRZ23+]. This approach starts by
rephrasing Hg in terms of the swap matrices Swap;;.’

Definition 1.2. For fixed n and 1 < i < j < n, the swap matrix Swap;; € M (C) is
defined by sending any rank one tensor

VR RV QU@ R, € (@2)®n
to the rank one tensor

VR RUR QU@ @, € (CH®",

where v, € C2.

'Physics literature often calls these SWAP or exchange operators [NC10].
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One can directly compute that any swap matrix Swap;; is expressed in terms of the
Pauli matrices as

1 o o o
(1.2) Swap,; = 5([ + 0% 0% + 050y + 0,07,).

Using (1.2), the QMC Hamiltonian (H;) can be expressed in terms of the swap matrices
rather than the Pauli matrices (1.1).

Proposition 1.3. The QMC Hamiltonian from (Hc) is given in terms of the swap ma-
trices Swap;; as

(1.3) Hg = Z 2w (I — Swap,;).

(i,3)€E(G)
1.3. Swap matrices on general qudit spaces. In this article we consider the QMC
problem on qudits instead of qubits. As qudits store more information than qubits,
systems of interacting qudits are a natural framework for quantum computing with less
resources [WHSK20]. Here, the swap matrices Swapgf) act on (C%)®" for some d > 2. In
analogy with the d = 2 case, they act as transpositions on n-qudit states.
Definition 1.4. For fixed n and 1 < i < j < n, the (qudit) swap matrix Swapgj) is
defined by its action on rank one tensors as

Swapl (1 ® - QU@ RV D @) =0 R DR DY D DY,

for any vy, ...,v, € C%

The action of swap matrices on qudits yields a representation p%d) of S, on (C%)®n
defined by

P (01 @ -+ @ V) = Vpm1(1) @ -+ @ Vri(y.

We denote the image p.” (C[S,]), which is a subalgebra of Mg (C), by M5¥¢(C). It is
called the d-swap algebra. Guided by the expression (1.3) of the QMC Hamiltonian in

terms of the swap matrices, one can define the Quantum Max d-Cut Hamiltonian via the
qudit swap matrices Swapgj).
Definition 1.5. Let G be a graph on n vertices and edge weights {w;; | (¢,7) € E(G)}.

The Quantum Max d-Cut (d-QMC) Hamiltonian is defined as

(HY) HE = Z 2w;; <[ - Swapgj)> :
(i,3)€E(G)

The d-QMC problem again asks for the largest eigenvalue of the d-QMC Hamiltonian
H in (HZ). The problem is motivated by determining ground state energies of SU(d)-
Heisenberg models on lattices [KT07, BAMC09, PM21]. While the QMC problem is
the quantum analog of the classical MC problem, the d-QMC problem is the quantum
analog of the d-MC problem pertaining to maximal d-colorable subgraphs, and the anti-
ferromagnetic d-state Potts model [FJ97]. The d-QMC problem was first considered in
this context by [CJKKW23+] in 2023. There the authors define the d-QMC Hamiltonian
with the use of the Gell-Mann matrices, which are a generalization of the Pauli matrices
to any size d x d. We give more insight into this approach and show that is equivalent to
ours in Section 1.5 below.

In order to develop an algebraic toolbox for solving the d-QMC problem, it is essential
to determine the precise relations that define the d-swap algebra. Since the transpositions
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(i,7) generate S, the swap matrices generate M5V¢(C). Hence, similar to the transposi-
tions, for distinct indices i, j, k, [, the swap matrices satisfy the relations

(vaapg;l))2 =1,

(d)

(1.4) Swapgj) Swapgj) = Swapg;]’) Swap;;’,

( (d
j ij

For d = 2, it is known (see [BCEHK24, Theorem 3.6] and [TRZ234, Theorem 3.8],
and [Pro07, Theorem 11.6.1] for general d) that the swap matrices additionally satisfy the
degree-reducing relation

(d)

Swapl(;l) Swap Z) = Swapgz) Swap ) = Swap%) Swap,, -

(1.5) Swapg) Swapﬁ) + Swapﬁ) Swapg.) = Swapz(-?) + Swapﬁ) + Swapgz) -1,

and that the symmetric group relations (1.4) together with the degree-reducing relation
(1.5) precisely define M>"2(C). In Section 3 we show that the general swap matrices
Swapg;l) are also characterized by a (slightly more complicated) degree-reducing relation;

see Proposition 3.1.

1.4. Main results. This paper applies the representation theory of the symmetric group
S, to explore and take advantage of the algebraic structure and symmetries inherent to
the d-QMC problem. Throughout the text, we refer to irreducible representations as
irreps. Our contributions are as follows.

1.4.1. Defining relations of the d-swap algebra. In Section 4, we identify the d-swap alge-
bra M3$¥¢(C) as a quotient of the free algebra generated by the (7

2) freely noncommuting
variables swap;; for 1 <i < j <n. For k € N denote

(1.6) cp = Z SWap;;, SWapP;,;, = - SWap; ;. -
1<ig,..yip <d
pairwise distinct,
i9<i; for j>1
Theorem 4.3 below states that M>%¢(C) is isomorphic to the quotient of the free algebra
C(swap;;: 1 <i < j < n) modulo the relations
swap?j =1,

(1.7)
SWapijSWapkl - SWapleWapij7

Cqg=C4—1—Cq—o2+ -+ (—1)d7101 + (—1)d.

We acknowledge that this isomorphism may not be new to experts in representation
theory, who will recognize the last equation in (1.7) as the vanishing of an antisymmetrizer
of d + 1 vectors on (C4)®" (e.g., [Pro07, Section 11.6]). Nevertheless, in Section 3 we
provide an elementary and self-contained proof that the last relation in (1.7) completely
determines M>%4(C) as the quotient of the group algebra of S,. To achieve this, the
Schur-Weyl duality is invoked to assess the precise decomposition of M5V¢(C) into irreps,
as follows.

Theorem 2.2. The d-swap algebra M?>“4(C) decomposes into a direct sum of simple
algebras generated by the irreps py of S, corresponding to partitions of n with at most d
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rows,

M(C) = ) pa(CSy).

AFn
ht(X)<d

1.4.2. NPO hierarchy for the d-QMC problem. A widely used approach for solving lo-
cal Hamiltonian problems is through semidefinite programming (SDP) relaxations and
noncommutative polynomial optimization (NPO) [NPA08, PNA10, DLTWO08, BKP16].
While the d-QMC problem is already an SDP of the form

max tr(pHg)  subject to p = 0 and tr(p) =1,
P

this formulation is hopeless for large n because the semidefinite constraint is a d" x d"
matrix. Instead, one needs to explore the 2-locality of the d-QMC problem. As in the case
of the classical MC, one can define a hierarchy of SDP relaxations which can be computed
efficiently, i.e., in polynomial time, and give upper bounds to the true maximum eigenvalue
of H [BH13, BGKT19, GP19, PT21, HO22]. However, due to the exponential growth of
the size of the matrices, only the first few levels are tractable.

Having identified the d-swap algebra as a quotient of the free algebra C(swap,;) in
Section 4, the d-QMC problem is written as a more efficient instance of a NPO problem
in Section 5. The d-QMC Hamiltonian Hg is represented by an element hg € C(Swapij>,
and its largest eigenvalue is

o, =min {a : @ — he is a sum of hermitian squares in C(swap,;) modulo (1.7)} .

By adapting the non-commutative Sum-of-Squares hierarchy (ncSoS) from [BCEHIK24],
we give a sequence of semidefinite programs (SDPs) whose solutions approximate a, from
above. This scheme is specifically tailored to the algebraic structure of the swap matrices
defining the d-QMC Hamiltonian. Since the d-swap algebra satisfies the symmetric group
relations, this hierarchy is exact at level n — 1. For large graphs G, only the first few
levels of the hierarchy are practical for computations. For this reason we also focus on
low-degree relations of swap matrices, which play a role in the construction of the SDPs
for the first two levels of the hierarchy. Appendices A and C provide explicit bases for
products of swap operators of low degree.

1.4.3. FEzxact solutions for cliques and star graphs. In Section 6 we turn our attention to
computing the exact solutions to the d-QMC problem for certain families of graphs. To
achieve this, we explore the isotypic structure of d-QMC Hamiltonians. Given a partition
A F n, the A-block of a d-QMC Hamiltonian is its isotypic component corresponding to
px under the isomorphism of Theorem 2.2 above. The d-QMC problem for cliques K,
on n vertices is easiest to address as the isotypic blocks of the corresponding d-QMC
Hamiltonian are scalar matrices (see Lemma 6.4). Let 7, denote the eigenvalue of the
block corresponding to the partition A. The following theorem gives an explicit expression
of X\ in terms of its rows Ay, ..., Ay, and identifies the partition A that maximizes n,; i.e.,
the solution to the d-QMC problem for an n-clique K, is computed.

Theorem 1.6. For any A Fn with rows A\ > -+ > A\g > 1,
d

P G 1>6(2d b ST w -k -1))”

k=1
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The maximum value of ny among all partitions A F n with ht(\) < d is obtained at

n—r n—r n—r n—r
(1422 )
A <\+ T T

T d—r

forn=1r mod d. The solution to the d-QMC problem for an n-clique hence equals

2 _ .2
n2+(d—1)n+r2—r(d+1)—n r

For the proof of Theorem 1.6 see Proposition 6.7 and Corollary 6.8. We acknowledge
that the solution to the d-QMC problem for an n-clique K,, (the second part of Theorem
1.6) has already been derived in [ACGNORVL23+, Theorem 4.1], in the context of ex-
changeability (or clique graph extendibility) of Werner states. Nevertheless, the explicit
formula for 7, in the first part of Theorem 1.6 is essential for tackling the d-QMC problem
on a more general class of graphs.

Towards this goal, we refine a principle from [BCEHK24] called clique decomposition. Tt
expresses the d-QMC Hamiltonian of a given graph as an alternating sum of Hamiltonians
of cliques and simpler graphs in a way that is suitable for eigenvalue analysis. A graph
with a simple clique decomposition is the star graph %, on n vertices, on which we focus
in Section 7.1. The relation

*n, =K, — K, 1
holds, where the minus sign means deleting from K, the edges that appear in K,,_;. This
decomposition was used in [BCEHK24] to show that the solution to the 2-QMC problem
for the star graph %, is 2n, attained at the partition A = (n—1,1). Extending this result,
we solve the d-QMC problem for .

Theorem 7.2. If A= (\1,...,A\q) Fn has d rows Ay > -+ > Ny, then the eigenvalues of
the A-block of the d-QMC Hamiltonian Hin form a subset of

{2(n —XM\1),2(n =X+ 1), ..., 2(n =g +d—1)}

containing the value n, = 2(n — Ay + d — 1). Hence, the solution to the d-QMC problem
for Y, is 2(n + d — 2), obtained by plugging \g = 1 into 2(n — A\g +d — 1).

1.4.4. FEzxact solutions for complete bipartite graphs. Star graphs are special cases of com-
plete bipartite graphs. In Section 7.2, we use the clique decomposition to exactly solve
the d-QMC problem for complete bipartite graphs K, if £ <4 or d < 3.

The statement of Theorem 1.7 below involves three parameters associated to the prob-
lem data (n, k,d):

eozmax{ee{l,...,d—l}: L”;kJ > [dfe”,

(1.8) elzmin{ee{l,...,d—l}: L:Jz{n;ﬂ},

L, d n n — 2k LHJ
==+ — =|=1.
2 " 2q+1) 17 L
If the set in the definition of e; is empty (e.g., n =5,k =2,d = 2), we set e =d — 1.
A partition A = (A1,...,A\¢) F m is balanced if A\; — Ay < 1 (e.g., the optimal partition
in Theorem 1.6); note that such A is uniquely determined by m and ¢. A subpartition of
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A is a partition obtained from A by discarding some rows. Then,
¢ := {e | the balanced partition of n — k of height e is a subpartition of
the balanced partition of n of height d}

is a discrete interval in {eg, e + 1,...,e1} by Lemma 7.25, and contains {ey + 1,eq +
2,...,e; — 1} by Lemma 7.26.

Theorem 1.7. Let 2k < n.

(1) The solution to the 2-QMC problem for K,y is 2k(n — k + 1). The solution to
the 3-QMC problem for K,y is 2(k + 1)(n — k) if n < 3k, and 2k(n — k + 2) if
n > 3k.

(2) Let k <4 and d < n. Let e, be the closest integer in € to e*. Then the solution
to the d-QMC problem for K, _j i ts the biggest of the three values of

M =Ny — Ny
for the balanced pt=n—k of height e, the balanced v = k of height d—e, and A+ n
obtained by merging (and sorting) p and v, where e is one of eq, ey, €.

The proof of Theorem 1.7 (see Corollaries, 7.13, 7.29 and 7.28) occupies the entire
Section 7.2.

Example 1.8. Let us compare the d-QMC problem for complete bipartite graphs and
the formula in Theorem 1.7 with the assertions in the earlier work [JSZ22+]. Therein,
the authors investigate the extendibility of bipartite Werner states of local dimension d.
The parameters ny = n — k and ng = k refer to the number of parties (divided into
two groups pertaining to the original two parties) that share an extension of the original
bipartite state. By [JSZ22+, Eq. (4)], the investigated problem reduces to finding the
smallest eigenvalue o, i q of

If B,—kkq denotes the solution to the d-QMC problem for K, _, then 8, i x4 is the
largest eigenvalue of

and therefore

(19) Bn—lmk,d = 2]{7(77, — k’)(l — an—k,k,d)-

A formula for oy k.4 is proposed in [J5Z224, Eq. (16)]. There may be a typographical

lapse in [J5Z22+, Eq. (16)]; the said formula involves the expression 4 = 2=k while

the preceding paragraph in [JSZ22+] perhaps suggests that njnA — d(nn—k) should be

+np
used in its place instead. Both variants of this formula yield values compatible with those

from Theorem 1.7 for small values of parameters n, k,d. However, in general there are
disparities, as follows.

Let (n,k,d) = (6,3,4). This is a balancing triple, and £,_j x4 = 28 by Theorem 7.27.
More precisely, in this case we have € = {2} and (eq, e*,e;) = (1,2, 3), and the maximal
value 28 is given by Theorem 1.7 at A = (2,2,1,1) and . = v = (2,1). Alternatively, this
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can be verified by a brute-force calculation of the largest eigenvalue of the 4096 x 4096
Hamiltonian Hf . In contrast, both variants of [JSZ22+, Eq. (16)] evaluate ap_gpd
as —x, which contradicts the straightforward relation (1.9).

3
1.4.5. Separation of irreps. In Section 8, we refine the NPO hierarchy for the d-QMC
problem, with the intention of calculating the maximum eigenvalue of the A-block in Hg
corresponding to a given irrep of S,, given by the partition A = n. The idea is to find
low-degree polynomials that distinguish distinct irreps indexed by partitions with at most
d rows. In Theorem 8.4 we show that irreps of .S,, are separated by the polynomials ¢ of
degree k from (1.6). This leads to an NPO formulation of the localized d-QMC problem.

Theorem 1.9. Let A\ = n have at most d rows. There are constants vy, ...,Y4—1 € Z such
that the largest eigenvalue of the A-block in HE, equals

min {a : & — he is a sum of hermitian squares in C(swap,;)

modulo (1.7) and ¢y =1, ..., C4_1 = ’yd,l}.

The NPO problem in Theorem 1.9 can be tackled with an NPA-like hierarchy of SDPs,
and the values v, can be evaluated using explicit Lassalle’s character formulas for cycles
in S, [Lsa08].

We also consider distinguishability of irreps of S,, from the perspective of the d-QMC
problem. As d-QMC Hamiltonians can only admit A-blocks for A - n with at most d rows,
one can only hope to distinguish such irreps through the d-QMC problem. For d = 2, it
is known that the value 7, itself separates irreps with at most two rows [BCEHK24]; in
other words, the spectrum of the Hamiltonian for K, separates irreps with at most two
rows. This is not the case anymore for d > 2. However, we show that for d = 3, the
spectrum of the 3-QMC Hamiltonian for %, separates irreps with at most three rows.

Theorem 1.10. Let A\, u = n be partitions with at most three rows. Then A\ = u if and
only if the spectra of the A-block and the u-block of Hin coincide.

See Proposition 8.2 for the proof. For general d,n € N, we leave it as an open problem
whether there exist graphs Gy, ..., G, on n vertices such that for all A\, u - n with at most
d rows, A = p if and only if the spectra of the A-block and the p-block of H&_ coincide
foralli=1,... ¢

1.5. Comparison with the work of Carlson, Jorquera, Kolla, Kordonowy, Way-
land. The d-QMC problem was introduced in [CJKKW23+], where it was defined via a
generalization of the Pauli matrices to arbitrary size d x d, called Gell-Mann matrices.

1.5.1. The Gell-Mann matrices. For each d > 2, there is a family of d*> — 1 trace zero
self-adjoint matrices, which, together with the identity /;, form a basis for M,;(C). More
concretely, for d = 2 these are the Pauli matrices, and for d > 3 there are three kinds of
d x d Gell-Mann matrices (see Appendices C.2 and C.5, where these matrices are given
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explicitly for d = 3 and d = 4, respectively):

symmetric: /\Zﬁnd = Eup + FEpa, 1<a<b<d,
antisymmetric: /\ngmd =1i(Eyq — Eayp), 1<a<b<d,
(1.10) diagonal: Ai = )\Z’l @ 0, 2<k<d,
Aj = L(Id,l @ (1—d)).
d(d—1)

Here, E,; are standard matrix units, and I;_; is the identity of size d — 1. Note that
there are (g) (non-diagonal) symmetric, (;l) antisymmetric and d — 1 diagonal matrices.
Summing up we get 2(;) +d—1=d(d—1)+d—1=d*—1 as expected. For fixed d
denote by GM (d) the set consisting of the d*> — 1 Gell-Mann d X d matrices of size d X d,
together with the identity I,.

As for the Pauli matrices, define for a fixed n € N,

N=I@ - @IA\RI®---®I ¢ Mgu(C)
—1
P
for any A € GM (d). By definition, X and A} commute for any i # j and A, A, € GM (d),
and
(1.11) AN AL |\ €EGM(d), j=1,...,n}
is a basis of My (C).

1.5.2. The d-QMC Hamiltonian via the Gell-Mann matrices. The formula (1.2) expressing
the swap matrices Swapz(»j-) in terms of products of Pauli matrices, i.e., with respect to the

basis (1.11) for d = 2, can be generalized to an arbitrary d as shown below.

Proposition 1.11. For any © < j we have

(1.12) Swap{! = - I + SO AN
,\eGM(d

Proof. Denote the right-hand side of (1.12) by R. Since (1.12) only involves two indices
1,7 we may assume n = 2 and prove that R acts the same as Swapz(»j)
the form v,, =¢,®e, € C?'®@ C? for 1 < p,q < d.

If p = ¢, then only the diagonal Gell-Mann matrices A\¢ for p < k < d act nontrivially

on basis vectors of

on UP,Q7
1 1 2 2
Rupp =26 ®ep+ 5 < p(p——l)(l - p)ep) ® ( m(l - P)%)

2
"2 Z( T )®< m—w@p)

<1 L1, d 1 )
=\ Y Up,p = Upp-
d p =i
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Finally, if p < ¢, then in addition to A for ¢ < k < d, also X\l and A" act nontrivially
on v, , and they both map it to vy,

1 1 2 2
= — — R - 1 _
Ruy,q d€p®eq + 9 ( (g — 1)610) ® < (g — 1)( Q)eq)

32 () (Vee)

1
+§€q®ep+§eq®ep
d
1 1 1
- ___JFZ—)UquJqu,p:qu- u
(d ¢ = 0-1)

Note that by (1.12), the d-QMC Hamiltonian can be expressed in terms of the d x d
Gell-Mann matrices as

(1.13) HE= ) 2wy L Z AN |

(i,))EE(G) /\EGM(d
where GM (d) denotes the set of all d x d Gell-Mann matrices. This is in fact the form of
the d-QMC Hamiltonian used in [CJKKW23+].

An advantage of our approach is that it incorporates algebraically all symmetries in-
herent to the d-QMC problem. Computations (such as the NPO relaxations in Section 5
the clique decomposition in Section 6 or the decompositions along irreps) with HZ, as in
(HZ) scale better with both n and d or are only made possible once one passes to qudit
swap matrices championed in this paper.

Acknowledgments. The authors thank Darij Grinberg for sharing enlightening com-
ments and his expertise in representation theory, and Dmitry Grinko for bringing to our
attention the relationship between the Quantum Max d-Cut and extendibility of symmet-
ric bipartite states, and recent developments on the latter topic.

2. PRELIMINARIES ON THE REPRESENTATIONS OF THE SYMMETRIC GROUP

In this section we review some standard elements of the representation theory of sym-
metric groups that are used throughout this paper; for a comprehensive source, see, e.g.,
[FHO1, Pro07]. For n € N we denote by S,, the symmetric group on n elements, i.e., the
group of permutations of n elements. A representation of S, is a group homomorphism
p: S, = GL(V) for a vector space V, also called S,-module. Any representation p of
S, naturally defines a representation p of the group algebra C[S,] of S,,. The resulting
representation p : C[S,] — End(V) is defined by

(X o) = Tt

TESy TESR

For simplicity, the letter p often refers to both the representation of S,, and the represen-
tation of C[S,].
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2.1. Irreducible representations of the symmetric group. An S,-module V is ir-
reducible if its only nontrivial submodule is V. Throughout we abbreviate irreducible
representation by irrep and use the terms irrep and irreducible module interchangeably.
Note that by Maschke’s theorem [Pro07, Section 6.1.5], any S,-module V' decomposes as
a direct sum of irreducible .S,,-modules.

It is well-known that the irreducible S,-modules are indexed by partitions A of n (often
denoted by A F n), where

k
A=, M) ENS, N> >0, Y N=n
=1

The number of summands k is called the height of A and denoted k = ht(\). For ¢ < k,
the partition (A1,...,\,) is a head, and the partition (Aet1,...,Af) is a tail of A\. A
partition A - n is usually depicted by its Young diagram. A Young diagram of shape \
has k rows and the ith row consists of A; boxes. For example, if A = (5,3,2) F 10, then
ht(\) = 3 and its Young diagram is

A Young tableau of shape )\ is a Young diagram whose boxes are filled with numbers
1,...,n such that each box gets a different integer. The symmetric group S, acts on a
Young tableau t of shape A\ = n by permuting the entries of ¢. This action defines an
equivalence relation, where two tableaux are equivalent if one can be obtained from the
other by permuting the entries within each of the rows. Equivalence classes with respect
to this relation are called tabloids.

The irreducible S,,-module V) corresponding to the partition A - n is called a Specht
module and it has a well-known basis consisting of polytabloids

er = Z sgn(m)m{T'}.
reCr
Here T ranges over all tabloids of shape A, C'r is the set of all permutations that permute
the elements only within the columns of T and for each @ € Cp, 7{T} is the tabloid
obtained from 7" by permuting the entries according to .

2.2. Schur-Weyl duality. As a complex representation of S,,, the d-swap algebra M>¥¢(C)
is semisimple. Key to solving the d-QMC problem for certain graphs is the precise knowl-
edge of the block decomposition of M5%¥¢(C) into simple matrix algebras. We now explain
how this block decomposition can be deduced using the Schur-Weyl duality of the actions
of S,, and GL4(C) on (Cd)®n (see e.g. [FHI1, Section 6.1] or [Pro07, Section 7.1.2]). The
natural representation of GL4(C) on (C?) “" is defined by the diagonal action; g € GL4(C)
acts on the tensor product of vy, ...,v, € C? by

G(@) (1 @+ @wp) =g(v1) ® -+ ® g(vy).

The actions of S,, and GL4(C) on ((Cd)®n commute and there is a bijection between the
irreducible modules of S,, and GL4(C). This interplay between permutations of parti-
cles and change of coordinates is indispensable in investigating qudit systems, see e.g.
[GNW21]. Furthermore, if A is a partition of n, then to the irreducible module V) of S,
corresponds (up to isomorphism) exactly one irreducible module Ly of GL4(C) and L,
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are precisely the maps from V) to (Cd) “" that commute with the action of Sh,
L/\ = Homgn (V)\, ((Cd)®n)

It is well-known that L, is nonzero precisely when ) is a partition with at most d rows
[Pro07, Proposition 9.3.1]. In fact, the dimensions of the modules L, can be explicitly
computed by the Weyl character formula [Pro07, Section 9.6.2].

The next proposition is a restatement of the Schur-Weyl duality [Pro07, Theorem 9.3.1]
for S, and GL4(C), taking into account [Pro07, Proposition 9.3.1].

Proposition 2.1. The algebras M>%¥4(C) and (,(GL4(C)) are centralizers of one an-
other inside End((@d)®n) = My~ (C), and with respect to the action of the direct product
GL4(C) x Sy, the space (Cd)@m decomposes as

(2.1) €)= P Lok
AFn
ht(A)<d
Since 5, acts trivially on each Ly, the space ((Cd) on decomposes as an S,-module into
irreducible modules V), (with multiplicities) as follows

(Cd ®n ~ @ lem(LA)

AFn
ht(\)<d

As a corollary we get the desired decomposition of the d-swap algebra M5V¢(C).

Theorem 2.2. The d-swap algebra decomposes into a direct sum of simple algebras gen-
erated by the irreps py of S, corresponding to partitions of n with at most d rows,

MSWCI(C)%J @ p)\ CS @ Mdlm VA

AFn AFn
ht(\)<d ht(\)<d

Proof. Using (2.1) we deduce that as a GL4(C)-module, the space (C?)®™ decomposes as
Cd ®n ~ @ Ldlm\/)\

AFn
ht(\)<d

Now considering the GL,4(C)-endomorphisms on both sides gives the desired result. In-
deed, the GLg4(C)-endomorphisms of (C?)®" are by definition the endomorphisms of
(C%H)®" that commute with the action of GL4(C). By the Schur-Weyl duality these are
precisely the elements from the d-swap algebra M>%¢(C). On the other hand,

EndGLd(C)< GB L}\dim(%\)) _ @ Endar,c ( dim( V/\))

AFn AFn
ht(A\)<d ht(\)<d

= D My (End(Ly)7)

A-n
ht(\)<d

@ Mdim(VA)<(C) =

AFn
ht(M\)<d

12

Remark 2.3. The dimension of any irreducible S,-module V), can be computed via the
well-known hook length formula (see Section 6 for some explicit calculations).
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3. DEGREE-REDUCING RELATION FOR QUDIT SWAP MATRICES

It is known (see, e.g. [Pro07, Section 9.3]) that, in addition to the symmetric group
axioms, the swap matrices Swapﬁj) also satisfy a degree-reducing relation of degree d. For
instance, (1.5) above is such an equation for d = 2. We now present the general form
of the degree-reducing relation for general d, and, for the reader’s convenience, give an
elementary and self-contained proof.

Since the symmetric group is generated by transpositions, each permutation can be
written as a product of transpositions (non-uniquely). For fixed d and k = 1,...,d let Cj
be the set of all products of k swap matrices that arise from permutations on a subset of
d + 1 letters, which cannot be written as a product of less than k transpositions (i.e., to
each permutation we assign one product). The next proposition gives the analog of the
relation (1.5) in the case of a general d.

Proposition 3.1. The swap matrices Swapg;l) satisfy the following degree-reducing rela-
tion
(3.1) Dos= > 5= > st (DT s+ (=)7L

seCy seCyq_1 s€Cq_o seCq

Remark 3.2. We often simplify the notation of sums involving products of swap matrices
(e.g., the ones in (3.1)) by summing over (a subset of) the symmetric group and using
the fact that every product of swap matrices corresponds to a permutation of the tensor
factors of (C4)®". On the other hand, every such permutation can be written as a product
Z(;.i) in a non-redundant way, i.e., relations (1.4) are applied to
simplify the expression as much as possible.

of swap matrices Swap

Remark 3.3. Note that it is enough to assume that the d + 1 letters in Equation (3.1)
are the numbers 1,...,d+ 1. In fact, an analogous equation with indices from some other
(d + 1)-subset J of {1,...,n} can be obtained by conjugating Equation (3.1) with any
permutation sending {1,...,d + 1} to J.

Example 3.4. Equation (3.1) for d = 3 with (z g k l) =(1,2,3,4) is as follows:

Swap12) Swap%) Swap34 + Swap12 Swap Swap + vaap13 SwapMSwap )+

Swap13 Swap(S) Swap42 + Swap14 Swap Swap + Swap14 Swap43Swap3% =

vaap12 vaap13 + Swap12 Swapm + Swap12 Swap23 + Swap(3) Swap +

Swap12 Swap34 + vaaup13 Swap14 + Swap13 Swap24 + Swap13) Swap +

Swap14 Swapgg + Swap23 Swap§4 + Swap23 Swapg4) —

Swa‘pg:);) - Swap Swap — SWap — Swap _ Swap(3) + 1
Remark 3.5. Equation (3.1) can be written in a more condensed form as
Z sgn(s) s =0,
SESd+1

saying that the antisymmetrizer on d + 1 letters equals zero (see [Pro07, Section 9.3.1]).

Here sgn denotes the sign of a permutation and each s is expressed in terms of the swap

(d)

matrices Swap,;” in a non-redundant way as explained in Remark 3.2.

Next is a preliminary lemma on the way to give an elementary proof of Proposition 3.1.
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Lemma 3.6. Let v be of the form e; ® e;, ® -+ ® e;,,, where i,, € {1,2,...,d} for
m=1,...,k+ 1 and exactly two of the i,, are the same.

Then any cycle of length k + 1 acts on v as a product of k — 1 transpositions and
corresponds to a product of two smaller disjoint cycles (so of length at most k, singletons
also count) such that none of them acts on a subset of the tensor factors of v containing
two equal factors.

Proof. Let o be a cycle of length k£ 4+ 1 and suppose without loss of generality that 1 is
the index i,, that appears twice in v (i.e., v has two copies of e;). Divide the letters

.,k + 1 into disjoint tuples Bj, By such that for each ¢, the indices of the factors of
v and o(v) at position k € B; are in the same tuple and none of the tuples contains two
copies of 1. Then o is the product of two disjoint cycles, represented by the tuples By, Bs.
This will also prove that the above set decomposition of {1,...,k 4+ 1} can be done in a
unique way.

The algorithm to find the tuples B; is the following: find a position j; € {1,...,k+ 1}
of one of the two e; in v and assign j; to B;. Then consider the factor Cipn, of o(v) at
position j;. If 4,,,, = 1, then we add no more elements to B; and start the process all over
again with the second factor e; of v whose position 7, is assigned to Bsy. Otherwise, if
my # 1, add j, to By and find the position j; of e;,, in v. Consider the factor e;, of o(v)
at position jo and repeat the procedure from before according to whether 4,,, equals 1 or
not. Proceed until the basis vector ¢;,, equals e; for some r and we cover all the letters.

Since v only has one index that repeats twice and all the other indices are distinct,
this construction gives the desired cyclic decomposition of ¢ into precisely two shorter
cycles. [ |

Example 3.7. We provide a concrete example for Lemma 3.6 in the case d = 5 and
n=6lLetv=e e Qe3Res®e; e and m = (123456) and set

5 .
—pé)( D, i=1,...,6.
Then
—e @6 @er®es@ey®es = pi ((1)(23456)

:€5®€1®61®€2®€3®64:pé5
(

o1(v v

( ) (),
(135)(246)) (v),
(14)(25)(36)) (v),
(135) 246)2)
(12345)(6))

O92\U

63®e4®e5®€1®61®€2:P65
(

62®63®64®65®€1®€1:P65

O4\U

(v)
(v)

o3(v) = e, ResRe; Ve ey ®eg =p,
(v) v),
(v)

(
o
J

(

(v)
(v).

O5\U

Proof of Proposition 5.1. First note that it is enough to verify Equation (3.1) on basis
vectors v of ((Cd)®(d+1) of the form e;; ® e;, ® --- ® e;,,,, where i,,, € {1,2,...,d} for
m =1,...,d+ 1 and exactly two of the i,, are the same. Indeed, if such vectors satisfy
(3.1), then the basis vectors with more recurring indices also satisfy (3.1) (introduce new
indices for the recurring indices, apply the results for the basis vectors as above and then
bring back the old indices). Since (3.1) is invariant under permutation of indices, it is
enough to prove that 3.1 holds for basis vectors v of the form

V=e1Qe®e3®- - Keqgey.
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Lemma 3.6 shows that, when evaluated on such a basis vector, each term s’ in the sum
over Cy cancels with a different term s in the sum over C;_; such that none of the disjoint
cycles of s acts on a subset of the factors of v with two equal factors. More precisely,
if & =(123---d+ 1) € Cy, the images of v under the powers s', (s')?, ..., (s')¢ are the
d permutations with corresponding cyclic structures (1,d), (2,d —1),...,(d, 1) such that
the two factors e; of v are not in the same cycle. Here (i,7) with ¢ + j = d + 1 stands
for a product of two disjoint cycles, one of length ¢ and one of length j. By permuting
the letters of (s')7, we obtain all the elements s in the sum over Cy_; corresponding to
products with cyclic structure (i, j) for any 4,7 with ¢ + j = d + 1 that separate the two
factors e; of v.

This means that by applying on v all the terms s’ in the sum over C;, we obtain the
actions on v of all the terms s in the sum over Cy_; that act on subsets of the factors of
v with no equal factors. Hence, the remaining terms in the sum over C;_; are such that
one of their disjoint cycles acts on a subset of the factors of v with two equal factors. We
then again apply Lemma 3.6 and proceed inductively. [

4. IDENTIFYING THE QUDIT SWAP ALGEBRA M>%¢(C) AS A QUOTIENT OF THE FREE
ALGEBRA

Let C(swap;; | 1 <7 < j < n) be the free *-algebra on (Z) generators endowed with
the involution * that fixes each swap;; and acts as conjugation on C. For d € N let Z™
be the its ideal generated by

swap?j =1,
(4.1) swap;;Swap,;, = Swap;;Swap,; = swap,swap;,
swap,;SWapy, = swapyswap;,
for all distinct indices 1, j, k, [, and the relation in (3.1) with the swap matrices Swapl(j)
replaced by the free variables swap,;. We use the convention that whenever ¢ > j, then
swap,; 1s interpreted as swap;;. Denote

AR = Clswap,; | 1 <i<j< )/ I
and observe that there is a natural surjective *-homomorphism p : CS,, — AV defined
by
(4.2) p((7,7)) = Swap, ‘f’ISWd-
The algebras A5V¢ and M5%¢(C) are isomorphic. Indeed, this follows from [Pro07, Theo-
rem 11.6.1]: namely, M5¥¢(C) is isomorphic to C[S,] modulo the two-sided ideal generated

by the antisymmetrizer on d+1 letters (see also [dCP76, Theorem 4.2] or [Gri+, Theorem
2.8.1]). We now present an elementary self-contained argument.

Proposition 4.1. The generators of Z5¥¢ do not all vanish under the irreps of S, corre-
sponding to partitions A of n with ht(\) > d.

Proof. To show that the swap relations (3.1) are not satisfied by any irrep of S,, corre-
sponding to a partition with at least d + 1 rows, consider an irrep corresponding to a
partition A F n of shape (Ay,...,\x) with & > d 4+ 1. We know that any irrep of S, is
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spanned by polytabloids
er =Y sen(m)m{T},
weCrp

where T' ranges over all tabloids of shape A, Cr is the set of all permutations that permute
the elements only within the columns of T and for each m# € Cp, 7{T} is the tabloid
obtained from T by permuting the entries according to .

Let T be the standard Young tableaux of shape A and consider the action of the
polynomial

g=(=D""> s+ (=" > s+ (D) Y sk =) s+
seCy s€Cqy_1 s€Cy_o seCq
on the polytabloid ey via
Sij €T = €(i )T
Choose the indices 1,...,i421 to be 1, A\ + 1,..., A\; + 1 respectively and note that the
coefficient at T" in the resulting polytabloid is

(—1)6“rl |Cy] - sgn(s € Cy) + (—1)d |Cy_1] -sgn(s € Cyq) + -+ |Co] - 1= |Ch| - (—1) + 1.

But the latter is strictly positive since, for k = 1,...,d, the sign of the elements in C}, is
(—1)*. This shows that the polynomial g does not vanish under the evaluation s;; = p(i j)
for the chosen A. Thus the swap relations (3.1) are incompatible with any Young Tableaux
with more than d rows. u

Proposition 4.2. All the irreps of S, corresponding to a partition of n with at most d
rows in its Young tableauz satisfy (3.1).

Proof. For any irrep of S,, corresponding to a partition A = n with at most d rows it is
enough to prove that (3.1) holds when evaluated at basis vectors, i.e., polytabloids

(4.3) er = Z sgn(m)m{T},
weCp

where T' is any tabloid of shape A. We use the canonical identification between tabloids
T and rank one vectors v € (C%)®" of the form v = ¢;, @ -+ ® ¢;, with i; € {1,...,d}.
Suppose A = (Aq,...,A;) with A; > A\;yq and let T be a tabloid of shape \. Define v to
be the vector with tensor factors e, at positions, which are the numbers appearing in the
kth row of T. Now permuting the tensor factors of v is the same as permuting the entries
of T. The inverse of this procedure assigns to a rank one vector v the tabloid 7" with kth
row consisting of the numbers that index the positions of tensor factors e in v. Now the
proof of Equation (3.1) in Section 3 implies that Equation (3.1) holds when evaluated at
each summand in (4.3), from which the claim follows. |

Theorem 4.3. The algebras A3 and M3"¢(C) are isomorphic.

Proof. The algebras M>%4(C) and AS" are both homomorphic images of the semisimple
finite-dimensional algebra C[S,,]. Therefore M5¥¢(C) and .A5"¢ and semisimple and finite-
dimensional as well. To show that they are isomorphic, we prove that ASVe and M>V4(C)
have the same block decomposition into simple matrix algebras.

The block decomposition of M5%¢(C) is described in Theorem 2.2. Recall that AS"¢ =
C(swap;; | 1 < i < j < n)/Z}™, where Z;™ is the ideal generated by the relations
(4.1) defining the symmetric group S,, and the degree-reducing relation (3.1), which holds
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precisely on the irreps of S, indexed by partitions with at most d rows (see Proposition
4.1 and Proposition 4.2). It is now immediate that the algebras A>¥¢ and M>%¢(C) have
the same semisimple decomposition. [ |

5. NPO HIERARCHY

The identification of the swap algebra M>%¢(C) as a quotient of the free algebra in
Section 4 allows one to view the d-QMC as an example of a noncommutative polynomial
optimization (NPO) problem.

Let F, = C(swap;; | 1 < i < j < n) be the *-free algebra on (3) generators, and
Vi = {s € F,: degs < (} its subspace spanned by the products of at most ¢ swap
symbols. Recall the isomorphism between M>%¢(C) and ASY¢ = F, /7% from Theorem
4.3. We can view the Hamiltonian Hg from (H{) as an element of A5V and let

hg = Z 2w (1 — swapij)
(i,4)€E(G)

be the corresponding element in F,. Since the x-algebra M>%¢(C) is finite-dimensional,
it is a C*-algebra. Therefore the largest eigenvalue of Hg equals

a, =min{a: a — HE = a*a for some a € A7}

:min{a ca—hg = Zs,tsk—i-q for some s, € F,, ¢ EISW}-
k

For ¢ =1,...,n define two sequences,
(5.1)
«y = min {a ca—hg = <A+ ngAm> uy for some A,, = AT | and A = O}
and
(5:2) oy = min {a oo —hg = Zs’,@sk + ¢ for some s, € V,, q € Iswd}
: k

= min {a o — hg =u;Au; mod Iswd for some A > O} ,

where uy is a column of products of at most ¢ swap symbols, and the g, are the generators
of the ideal Z5V¢ as in Section 4. Then ay < o for every ¢, the sequences {ay}, and {a}},
are decreasing, and «,,_1 = a},_; = a,. The last equality holds since every permutation
in S, is a product of at most n — 1 transpositions, and A5V is a quotient of C[S,,].

Clearly, (5.1) is a semidefinite program (SDP). The second line in (5.2) is likewise an
SDP once the calculation modulo Z5%¢ is resolved (see the paragraph below). We refer to
them as the /*" relaxations of the d-QMC. Thus we obtained hierarchies of SDPs whose
solutions converge to the solution of the d-QMC from below. The hierarchy associated
with «} is a very special case of the analog of the Lasserre hierarchy [Lse01] for NPO
that is based on a noncommutative Positivstellensatz [HMO04], and whose dual is the
Navascués-Pironio-Acin hierarchy [NPAOS, PNA10] in quantum physics.

While the expression (5.1) is readily an SDP, it involves more unknowns than (5.2) (i.e.,
in addition to unknowns « and A > 0, it also involves several unknown symmetric 4,,).
Thus, it is preferable to work with (5.2). To prepare the linear constraints in the SDP
(5.2) that arise from o — hg = ujAu, mod Z5¥¢ (note that the right-hand side involves
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products of at most 2¢ swap symbols), one needs to identify a subset BZ, in V5, that maps
to a basis under the quotient map q : Vay — (Ve + Z5¥4) /Z5%4. To do this, one can start
with a basis of Va,, reduce it modulo ITSLWd via a noncommutative Grobner basis algorithm
[Mor86], and then identify a basis B, in the resulting set. Alternatively, one can obtain
a concrete instance of BY, as follows. In [Pro21], a permutation 7 € S,, is called (d + 1)-
good if there is no increasing sequence jo < --- < jg such that 7(jo) > --- > 7(ja). By
[Pro21, Theorem 8], (d + 1)-good permutations form a basis of M>%¢(C). For BY, one
can thus choose the set of all (d + 1)-good permutations that are products of at most 2¢
transpositions.

When ¢ is large, the size of the SDP for «y (i.e., the number of variables, linear con-
straints, and the size of the semidefinite constrain) is typically too large for available
SDP solvers. In practice, one thus often has to settle for computing only the first two
relaxations of a., namely a; and ay. To solve these two SDPs, the sets B and B{ are
required in view of the preceding paragraph. For d = 2, these are given in [BCEHK24,
Subsection 4.3.2 and Appendix B.2]. For d > 5, one can take B¢ (resp. B4) consisting of
all permutations that are products of at most 4 (resp. 2) transpositions; see Appendix A.
For d € {3,4}, the bases are presented in Appendices C.1, C.4 and C.6.

Example 5.1. We computed the first two relaxations of (5.2) in the case d = 3 for
all 853 connected graphs on n = 7 vertices. The list of graphs was generated using
Nauty [MP14]. To construct the SDP forms of (5.2) we used noncommutative Grébner
bases computed with Magma [BCP97]; alternately, the results of Appendices C.1 and
C.4 could be employed. The produced SDPs were solved on a Macbook Air laptop using
Mathematica®. The second relaxation was (up to numerical precision) exact on all seven
vertex graphs. On the other hand, the first relaxation performed very poorly. The
reason is that in low degrees (so degree < 2 when working with the first relaxation) the
nontrivial relation (3.1) defining the 3-swap algebra does not enter computations. One is
thus essentially only optimizing over the corresponding group algebra, where the solution
is trivially found; cf. Subsection 6.1.

Thus the 3-QMC provides a large class of examples where the second NPO relaxation
clearly outperforms the first one.

6. QUANTUM MAX d-CUT AND IRREPS

The decomposition of the d-swap algebra M>%¢(C) described in Section 2.2 is a valuable
tool for calculating the eigenvalues of the qudit Quantum Max Cut Hamiltonian of a
complete graph on n vertices. Recall from (1.3) that given a graph G, the d-QMC irrep
Hamiltonian H is defined as

HE = pd Z 2w;; (id—(i j)) | = Z 2wy; (I — Swapg;l)).
(i,7)€E(G) (i,7)€E(G)
Here the Swapz(?) denote the qudit swap matrices in M5¥¢(C).

Definition 6.1. Let G be a graph on n vertices with edge set E(G) and edge weights w;;.
Let A = n be a partition labelling an irrep of S,,. The QMC irrep Hamiltonian H} is

2https ://www.wolfram.com/mathematica
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defined as

HE = px Z 2wy (id —(i 7))
(4.9)EE(G)

The following is a straightforward corollary of Theorem 2.2.

Corollary 6.2. The spectrum of the d-QMC Hamiltonian of a graph G is the union of
the spectra of all the Hamiltonians corresponding to the irreps of S,, with at most d rows.
That 1is,

cigs(HE) = | elgs(Hp),
AFn
ht(\)<d

and, in particular,

Cigac(HG) = max (eig,(Hg)) -

ht(A\)<d

6.1. Exact solution for sufficiently large d. We record the largest eigenvalue of the
Hamiltonian

HE = Z 2w;; <] - Swapgj‘)>

(4,5)€E(G)

if d >n=|V(G)| and w;; > 0 for all (4, j) € E(G).

Proposition 6.3. If all the edge weights in G are nonnegative and d > n, the largest
eigenvalue of H, is 435 wij.

Proof. Clearly,

|HE|| < Z 2w;; I—Swapg;j)

(4,)€E(G)

1,7

so the largest eigenvalue of HZ is at most 4Zij w;j. If d > n, then

v = Z SgN(T)er1) ® -+ @ ex(n)

7T€Sn
satisfies Swap;;’v = —v for all i # j. Therefore Hgv = (43, ;wij | v. |

Let us end this short subsection with a comment on the case d = n — 1. While
M (C) =2 C[S,], the swap algebra M5%»-1(C) is isomorphic to the direct sum of all the
irreps of S, apart from the one-dimensional sign representation of S,,. The latter is, as
a sub-representation of C[S,], spanned by a = &% o
C[S,]. Thus M5¥»-1(C) is, as a C*-algebra, isomorphic to the orthogonal complement of
a in C[S,]. Under this identification, the Hamiltonian H} " corresponds to

sgn(m)m, the antisymmetrizer in

(6.1) > 2wy(id—(g) -4 > wy)aeC[S,

(4,5)€E(G) (4,5)€E(G)
because the projection of id —(i j) onto the span of a equals 2a. While (6.1) lacks the
sparsity (2-locality) of H, g’l, it can at least be viewed as an operator on a slightly smaller
space of dimension n! < (n — 1)" via the left regular representation of S,,. We speculate
that M5%»-1(C) differing from C|[S,,] only for the (very simple) sign representation might
offer further insight into the (n — 1)-QMC problem, which is currently beyond reach.
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6.2. Exact solutions for clique Hamiltonians with uniform edge weights. We now
present the main steps in the computation of the spectrum of the d-QMC Hamiltonian of
a complete graph with uniform edge weights. For the rest of this section we assume all
edge weights w;; = 1.

The clique is the easiest graph for tackling the d-QMC problem since the isotypic
components of the d-QMC Hamiltonian are scalar matrices in this case.

Lemma 6.4. Let A - n be a partition. Then
(6.2) Hy =ml,

where My s a scalar depending only on the irrep \ and I is the identity matrix of the
appropriate dimension.

Proof. Follows by [BCEHK24, Lemma 2.11]. |

For any partition A F n, the dimension of the irrep py of .S, is the value of the corre-
sponding character y, : S,, — C at the identity element e € .S,,. So
Xa(m) = Tr(pa(m)), T E Sy,
and, in particular,
xa(e) = Tr(pa(e))

is the dimension of the irrep py of S,. From Lemma 6.4 if follows that the eigenvalue
Ny can be expressed through the values of the character y, at the identity e and at any
transposition (7 7).

Lemma 6.5. For any A - n let x» be the character corresponding to py and let ny be as
m Lemma 0./. Then

(6.3) = Q(Z) (1 - %)

Proof. For A - n, the constant 1, can be explicitly computed by taking the trace on both
sides of (6.2). Indeed, since

Hy =pi| >, 2(1-(j)].

(1.5)EE(G)
we get, by taking the trace, that
wl) = % 2@ - (i) =2(3) ba@ - (@)
(1.)EE(G)
On the other hand,
Tr [H;\(} = xale),

Example 6.6. For a two-row partition A = (n — k, k), it was computed in [BCEHK24,
Lemma 2.12] that

so that

= 2k(n +1) — 2k°.
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We now compute the eigenvalue 7, for any partition A using a formula by Frobenius
[Fro00]. For a more direct approach, where we explicitly compute the value of x, at a
transposition using the well-known hook-length formula, see Appendix D.

Proposition 6.7. Let ny be as in Lemma 6.4. For any A n with rows Ay > -+ > Ay,

(6.4) = n? + 2 1)6(2d - _ S (= (k= 1)"

k=1

Proof. Let A = n be a partition with rows A\; > -+ > A\; > 1. Recall that the conjugate
partition A" of A is the partition of n, whose kth row is the kth column of \. It follows
from [Fro00, p. 534] (or [Lsa08, Theorem 4]) that for any transposition (7 j),

() =210 - ()
2] xale) |\ 2 2]
Moreover, by [Sta99, Proposition 1.8.3] we have

d A d

Z(2> :Z(k;—l)Ak.

k=1 i=1
Hence,

d
= n?+ = (= (k1)) m

Since w =12+ .-+ (d —1)?, the formula (6.4) is valid even for A F n with
ht(A) <d,ie, A= (A,...,Ag) with A\ > --- > X\; > 0.

Using Proposition 6.7, one can deduce the solution to the d-QMC problem for a clique,
i.e., the maximal 1y, where A = n ranges over all partitions with at most d rows. Moreover,
the form (6.4) of 7, eases the computation of the precise partition A F n at which the
maximum is obtained.

Corollary 6.8. The mazimum value of nyx among all partitions X\ = n with ht(\) < d is
obtained at

(6.5) A= (1+

n—r n—r n-—r n—r)

T I e, e

— -_
r d—r
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forn =r mod d. Moreover, the solution to the d-QMC problem for an n-clique is

n2 _ r2

(6.6) n+(d—Dn+r*—r(d+1)—

Proof. The statement for d = n is routine (or see Proposition 6.3). We thus assume d < n.

First, for each partition A F n with e = ht(\) < d we find a partition A F n with
ht(\) = e 4+ 1 < d such that 5 > 7y Let ¢ be the largest index for which A, > 1 (¢’
exists since d < n). Then construct A - n with ht(\) = e + 1 as follows:

Aj 1<j<e j#¢
N=4N—1 j=¢
1 j=e+1
Now
77A_77;\:n2+e(e—1 )(2e — 1) Z )\k_ _1
k=1
(e DAY S (e (k- n)’)
6 k=1
— = (= D))+ (e — 1= (= 1)+ (1 —e)?
—2(\e +e—€') <0,
as desired.

Thus the solution to the d-QMC problem is attained at A = n with ht(\) = d. Since
n,d are fixed, maximizing 7, is by Proposition 6.7 equivalent to minimizing
d

(6.7) FO) =" (= (k=1))°

k=1

over partitions A - n with ht(\) = d. That is, >0, Ay =n and Ay > Ay > - > A\ > 1.
We claim that any minimizer \* of (6.7) has at most one jump, i.e., A} —\} < 1. Assume
otherwise. Then there are d > k > ¢ > 2 such that

N SN <N < SN <N, << Ay

We now replace \; with A; + 1 and \j_, with A} , — 1 to obtain a new partition AT - n
with ht(AT) < d. Then

FO) = FON) = (= (k= 1))" + (At — (€= 2))°
— 1=k =1)) = (N — 1= (£ —2)°
=2(k—0) 4+ 2(M—1 — M) >0,
contradicting the minimality of A\*. Since a minimizer A of (6.7) satisfies \; — Ay < 1,
(6.5) follows.

It is routine to check that the solution to the d-QMC problem for an n-clique, obtained
by plugging (6.5) into the formula (6.4) for n,, is in fact (6.6). |

Remark 6.9. The solution (6.6) to the d-QMC problem for an n-clique is indeed an

integer, since
n*—r? (n—r)(n+r)

d d
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and n — r is divisible by d (as n = r mod d).
7. GRAPH CLIQUE DECOMPOSITION

In this section we refine an algorithm from [BCEHK24, Section 6], called graph clique
decomposition, to solve the d-QMC problem for a larger family of graphs, namely star
graphs and a large class of complete bipartite graphs. The clique decomposition expresses
the d-QMC Hamiltonian of a given graph as an alternating sum of d-QMC Hamiltonians
associated with cliques and simple graphs, in a form suitable for eigenvalue analysis.

7.1. Exact solutions for star graphs. Let n > 2, and consider the star graph %, on
n-vertices and observe that if we label the vertices of ¥, so that n corresponds to the
central vertex, then

(7.1) *, =Ky — K, 1.

E.g., for n = 8 we have

1 1
T 2 7 s 2
\8/ B / \
6 I\ 3 6\ /3
5 4 5—4

Here, we view K, 1 as a graph on n vertices, in which the vertex n is disconnected from
the rest. This is the clique decomposition of %, which together with the Young branching
rule [Sag01, §2] facilitates the computation of the eigenvalues of Hin significantly. The
spectrum of H§ in the case d = 2 was computed in [BCEHK24]. Note that H,(,:z =0 for
the 1-row partition (n) F n.

Example 7.1 ([BCEHK24, Lemma 6.1]). Let n > 2 and A = (A, A2). If Ay > Ay then
Hy has two eigenvalues

€1 :2(n—)\1), 62:2<n—)\2—|—1)

If \; = )y then Hﬁ,n has only one eigenvalue e; = 2(n — Ay + 1) = n + 2. The solution to
the 2-QMC problem for %, is 2n, attained at the partition A = (n — 1, 1).

We extend this result by computing the eigenvalues of Hin.

Theorem 7.2. If A = (A,..., ) F n hase < d rows \y > -+ > A\, > 1, then the
eigenvalues of the d-QMC irrep Hamiltonian Hj‘(n form a subset of

{2(n—XN\1),2(n =X+ 1), ..., 2(n—=Ac+e—1)}

containing the value n, = 2(n — Ao + e — 1). Hence, the solution to the d-QMC problem
for %, and 2 < d <n is 2(n+d — 2), attained at any partition with A\g = 1.

Proof. By Lemma 6.4, Hy is a scalar matrix for every partition A. From (7.1) we deduce
that Hin is similar to H }% —-H f\ﬂk ,®I3. The eigenvalues of H f\ﬂk , can be computed using
the Young branching rule [Sag01, §2]. It states that the restriction of any irrep, say
labeled by the partition A, of S, to the subgroup S,,_; decomposes as a direct sum of all
the irreps of S,,_1 which can be obtained from A\ by removing one box.

Hence, the eigenvalues of H;‘(n are obtained by subtracting from 7, (which is the single
cigenvalue of Hy ) each of the (at most e) eigenvalues of Hy . Precisely, we use the
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following procedure: Let the index j run from e to 1 and let ny be the eigenvalue of H ;\(n
and 7, the eigenvalue of H fgﬁ_l, where p; is obtained from A by removing one box from
the jth row. Now let

1:(7) = M = M, = 2(n = A+ = 1).

As noted, 1, = n.(e) is an eigenvalue of Hi,n if A, > 1, since in this case one can remove
a box from the last row of the Young diagram of A to obtain a valid Young diagram of a
partition of n — 1. Next, consider j = e —1. If Ae_; > A, (hence, A\._; > 2), then n.(e —1)
is an eigenvalue of H. ’\n, because one box can be removed from A\._; to obtain a valid
partition of n — 1; otherwise, if A\._; = A., proceed to j = e — 2 and so on.

It is now immediate that the largest eigenvalue of Hg (for d < n) is 2(n +d — 2),
which is obtained by plugging 7 = d and Ay = 1 into the expression for 7,. [

To give a more precise description of the spectrum of Hin for A with ht(\) < d, it
is easier to look at that of nl — %H;\(n: its eigenvalues are obtained from the strictly
decreasing sequence

A, e —1, ..., g —(d—1)
by keeping only the smallest element of any subsequence of consecutive values, and then
removing —(d—1) if necessary. Indeed, the subsequences of consecutive values correspond
to rows in A with equal length (thus when restricting the irrep to S,_1, a box can be
removed only from the lowest such row), while removing —(d — 1) corresponds to the
possibility that A has less than d rows.

As an example we now explicitly present the spectrum of Hin.

Example 7.3. Let A = (A1, Ag, \3) be a partition of n with three rows. The d-QMC irrep
Hamiltonian Hin has at most three distinct eigenvalues, namely

(1) if Ay > Ay > A3 then it has three eigenvalues
e1=2n—A3+2), ea=2n—X+1), e3=2(n—X\),
(2) if Ay = Ay > A3 then it has two eigenvalues
er=2(n—A3+2), e3=2(n—A+1),
(3) if Ay > Ay = A3 then it has two eigenvalues
61:2(n—)\3+2), 62:2<n—>\1),
(4) if Ay = Ay = A3 then it has one eigenvalue
er=2(n— A3+ 2).
The solution to the 3-QMC problem for %, is 2(n + 1), attained at partition of the form
A= (A1, A0, 1).
Corollary 7.4. Let n > 2. If \, u are partitions of n with distinct parts, then
spec(Hy ) =spec(H) ) <= A=p.
Remark 7.5. The assumption about distinct parts in Corollary 7.4 is necessary. Indeed,
A=(4,2,2,2,2) and pu = (5,5,1,1) satisfy spec(Hy ,) = {16,28} = spec(H} ). With a
bit more effort, one also can find distinct partitions with equal height such that Hj‘m and
H), ~have the same eigenvalues:

A= (8,5,5,5,5,2,2),
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w=19,9,4,4,22 2)

satisfy spec(Hy,,) = {24,31,36} = spec(H},, ).
7.2. Exact solutions for complete bipartite graphs. The star graph %, from the
previous section is a special example of a complete bipartite graph. We now describe how
the solution to the d-QMC problem can be obtained for a large class of complete bipartite
graphs K, with k& < n/2; by this we mean a graph whose vertices are separated into
two subsets N; and N, of size n — k and k respectively, each with no internal connections

and such that every vertex in Nj is connected to every vertex in N,. The complement of
K, consists of two cliques K,,_j and K}, (cf. Equation (7.1)), hence

E.g.,if n =6 and k& = 2, then we have

5 6Q\2 \ 6
= | | - 2 0 |
6 53/3 / 5

This gives a formula for the d-QMC Hamiltonian H¢

n—k,k’

HL = HE - (H;gnfk@Idk + [dn,@H;Qk) .

n—k,

Note that the summands on the right-hand side commute. Thus, for A - n with at most
d rows,

(7.3) Hy  =Hp — ((Hk, , © I+ (1@ Hg,)").

First, note that H}(n is a known scalar matrix (by Lemma 6.4). Second, the matrix
Hy, ,®@1+1®Hg, belongs to the image of the subspace R[S,,—;]®id 4 id ®R[S)] under the
representation p of S,. This subspace is contained in the subalgebra C[Sn—-k] ® C[Sk] =
C[Sn—k X Sk] of C[S,]. In order to determine eigenvalues of (7.3), it therefore suffices to
consider the restriction of the irrep A of S, to a representation of S,,_; x S,. The matrices
(Hg, ,®1)* and (I® H, )* commute, so the eigenvalues of (Hg, , @ [)*+ (I ® Hg, )* are
sums of matching eigenvalues of (Hy, , ® I)* and (I ® Hg, )*. While the latter matrices
are similar to Hp ,®@lTand I ® H ;\( , respectively, the transition matrices involved in

n—k,k

similarities are dlstlnct because prOJectlng to the irrep A\ within pn does not preserve
the tensor decomposition (C?)®("~*) @ (C*)®*. To compute the eigenvalues of (7.3), one
therefore needs to understand how the restriction of the irrep A on S, to S,_r X Sk
decomposes as a direct sum of irreducible representations of S,,_j x Si. Similarly to the
case of the star graph, a branching rule is invoked, this time the Littlewood-Richardson
rule [Sag01, Section 4.9] together with the Frobenius reciprocity [Sag01, Theorem 1.12.6].
More precisely, the restriction of the irreducible module of S,, corresponding to A F n
decomposes as

(7.4) Vs @y (V, @ V),

puFn—~k,
vk
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where ¢}, is the Littlewood-Richardson coefficient [Sag01, Section 4.9]. Combining (7.3)

and (7.4), the eigenvalues of Hy _  are

(7.5) A, pyv) =y — (. + 1)

over all pairs of ;1= n — k and v I k such that the Littlewood-Richardson coefficient C//\w
1S nonzero.

7.2.1. Littlewood-Richardson coefficients and balanced partitions. In order to explain which
triples of partitions (A, u, v) are admissible in (7.5), we introduce some further terminol-
ogy. Let u be contained in A, in the sense that pu; < A; for all 7. A filling T" of the
skew-shaped Young diagram A/u with natural numbers is a Littlewood-Richardson (LR)
tableau if

(1) it is a semistandard Young tableau (its entries weakly increase along each row and
strictly increase down each column), and

(2) the concatenation of reversed rows in T is a lattice word (a word in which every
prefix contains at least as many is as (i + 1)s).

The content of a tableau T is the partition whose ith part counts the number of 7s in 7.
By [Sag01, Theorem 4.9.4], the Littlewood-Richardson coefficient cf;y counts the number
of LR tableaux of shape \/u with content v.

Remark 7.6. To apply the clique decomposition with more than two summands to the
d-QMC problem, let

H — Hgl ® Idnfnl + Id”l ® Hg2 ® Idnfnlfnz + e —I— Idnfnr ® ng’

where the graphs GG; act on pairwise disjoint sets of indices of size n; with ny+- - -+n, = n.
Then

H* = (HE, @ Lo ) 4+ (Ign-nr @ HE )
and the eigenvalues of H* are of the form
Qp 4+,

where «; are eigenvalues of Héz and \; - n; are such that the iterated LR coefficient
Cx,...x, is nonzero. The iterated LR coefficients are inductively defined via the usual LR

coefficients ¢, ), | (see [KLMSI12, GL20]). In fact,

Dy = Z Cgl,...,AH ¢y, = Z CgllAzcgf As " 'Cg:ixrflcék_m’
(Fn—nr ClyeeesCr—2
where (; F ny + - - -+ n;. The iterated LR coefficients are also invariant under any permu-
tation of the partitions.
In the special case when G; = K,,, for all 4, the eigenvalues of H* are of the form

M+ 0,

where \; b n; are such that ¢}, is nonzero.

The above observation may be used to reduce the d-QMC problem for a given graph G
to simpler d-QMC problems. Every graph GG admits a unique tree clique decomposition
[BCEHK?24, Theorem 6.3] as a signed sum of simpler graphs G; (e.g., a complete bipartite
graph is a clique minus two cliques as in (7.2)). The Hamiltonian Hg then decomposes
as a signed sum of Hamiltonians Hg, [BCEHK24, Theorem 6.5]. Hence, the iterated LR
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coefficients dictate as above how eigenvalues of H) express as signed sums of eigenvalues
of H, é 2 In particular, if G is a signed sum of cliques, the iterated LR coefficients and the
formula (6.4) for 1, give a combinatorial approach to solving the d-QMC for G.

We conjecture that the following is true.

Conjecture 7.7. The mazimum of A\, p,v) as in (7.5) is attained at a triple of parti-
tions A\Fn, ptn—=k and v+ k such that at most one part of A is the sum of a part in
i and a part in v, while the other parts of X are distributed in p and v.

Conjecture 7.7 is supported by numerical experiments for all values n, k, d with 2k < n,
d<mn,n<26.

Given p-n —k and v F k, let W v - n be the partition obtained by merging and
sorting the parts of p and v (i.e., if partitions are viewed as multisets of rows, then p W v
is the disjoint union of p and v). We say that u is a subpartition of X if p is obtained
from A\ by discarding some rows (this is a stronger condition than p being contained in
A). In particular, p and v are subpartitions of W v.

Proposition 7.8. When k < 4 or d < 3, the maximum of A\, pu,v) as in (7.5) is
attained at a triple of partitions ptn—k, vk and A = pWv = n. For such a triple,
the coefficient c;)u 1S nonzero.

For the rest of this section we focus on maximizing A(uW v, u, v). The proof of Propo-
sition 7.8 is rather technical, and is presented in Appendix B.

Remark 7.9. The triple (n,k,d) = (10,5,5) is the first where the conclusion of Propo-
sition 7.8 fails. The solution to the d-QMC problem for Kj 5 is 72 attained at

A=1(2,2,2,2,2), p=1(2,2,1), v =(2,2,1).
Maximizing A(\, u, v) over triples (A, i, v) as in Proposition 7.8 yields 70, attained at
A=1(3,2,2,2,1), p=1(2,2,1), v=(3,2) and A=1(3,2,2,2,1), p=1(3,2), v=(2,2,1).
Lemma 7.10. The expression A(puW v, pu,v) is mazimized when p and v are balanced.

Proof. Let A = pWv. Choose the largest index k, for which there is an [ > k such that
Ak = i, i = p; for some @ < j and \; — Ay > 2. Then construct Af (and ;ﬂ) by moving a
box from ); (p1; resp.) to Ax (u; resp.). Note that by the choice of k, the obtained AT and
u are indeed valid partitions. Then

— e —k+ 12+ (A — k1)
(M—Z+U + (N —1+1)?
+ (s — i+ 1) = (] —i+1)°
0@—]+ 17— (pf —j+1)°

=2(j—i—1l+k)<O

M= N — Ny — (Mt — Nyt — M) =

since clearly, 7 — ¢ < [ — k. After repeating this procedure inductively we deduce that a
balanced p gives the highest value of (7.5). Since the procedure does not affect v and the
rows of pu are still disjoint from the rows of v, the coefficient C;)TV is nonzero. By symmetry,
the same holds for v instead of . ]

3n [BCEHK24, Section 6.5], it is erroneously asserted that eigenvalues of H, é are signed Minkowski sums
of eigenvalues of H, é’ for all A; (without the non-vanishing condition on the iterated LR coefficients).
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Lemma 7.11. The expression A(u W v, p,v) is mazimized when ht(puWv) = d.

Proof. Let A = pWwv. If A+ n has height f < d, let [y be the biggest index such that
N\, > 1. The partition AT = n is obtained from A by moving the last box of the lyth row
of A to a new row (so that AT has f + 1 rows).

Denote e = ht(p). If \;, = p; for some j, then uf is constructed from g by moving the
last box of the jth row of i to a new row (so that u' has e + 1 rows). Note that by the
definition of [y, we indeed obtain a valid partition. Hence,

fF=Def=1 (F+DfRF+1)

M — N — (Mt — Mut) =

6 6
_e(e—1)(2e—1) N (e+1)e(2e +1)
6 6
=g —lo + 1P+ (N, = lo+ 17 + Ay = f)?
=+ 1) = (b =5+ 1) = (g —e)?

=2e—j—f+1) <0.
If \;, = v, for some k, then construct v' from v by moving the last box of the kth row of
v to a new row. By analogy with the above computation, we have
= Ny — (M — 1) < 0.
It is finally clear that C;\WT > 0. ]

By Lemmas 7.10 and 7.11, we restrict to ht(u W v) = d and balanced utn —k, v F k
for the rest of the section. If 4 = n — k and v F k are such that the last part of u is not
smaller than the first part of v, we write W v as (u, ), to stress that this partition of
n obtained by concatenating p and v. In the following lemmas, whenever (u,v) F n is
referred to, it is assumed that p and v are suitable for (i, v) to be valid.

Lemma 7.12. Suppose p - n—k andv & k are such that (u,v) is valid. Letting e = ht(u),
we have

(7.6) A((p,v), p,v) =2k(e +n —k).

Proof. Let A = (u,v). Using the formula (6.4) from Proposition 6.7, we have
(7.7)
A\ p,v) =n* —(n—k)* — k*
N dd—1)(2d—=1) elfe—1)(2e—1) (d—e)(d—e—1)(2d—2e—1)

6 6 6

Z(A—]—l +Z j—l +_(Vj_<j—1)>2

j=1 =

Since the first e rows of A form g, the third line in (7.7) simplifies into

d
—Z(Aj—(J'—l Z -(-1)
j=e+1

Y e G e DY (- G- 1)

Jj=1 Jj=1
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= e D) Y - G- )

=Y e(2v;—2j—e+2) =e(d—d* —e+de+2k).
1

<.
Il

Putting this back into (7.7) and simplifying the obtained expression yields (7.6). |
Corollary 7.13. The solution to the 2-QMC problem for K, _j is 2k(1 +n — k).

Proof. As explained in the beginning of this section, we are maximizing (7.6). By Propo-
sition 7.8, this is maximized when A = (n — k, k), p = (n — k) and v = (k). The desired
value is then given in Lemma 7.12. [

Lemma 7.14. Assume ptn —k and vt k are balanced, ht(u) = e, and A = (u,v) - n.
Suppose 1t is the balanced partition of n —k on e+ 1 rows, v' is the balanced partition of
kond—e—1rows. If \' = (u',v") is a (valid) partition of n, then

AN, @ vt > A w).
Proof. Immediate from Lemma 7.12. [

Lemma 7.15. Suppose ut=n—k and v+ k are balanced, ht(u) =e, and A = (u,v) - n.
Suppose pu' is the balanced partition of n —k on e+ 1 rows, v' is the balanced partition of
k ond—e—1 rows. Assume Xt = (vT, u") = n. Then

AN, v) = AN @)y =2((=1+d)k + (1 —d +e)n).
In particular,
ot ot k
AN p,v) > AN u' ') = eZ(d—l)(l——).
n
Proof. This is again immediate from Lemma 7.12. [

Further analysis splits into two main cases, according to the following definition.

Definition 7.16. We call a triple (n, k, d) balancing if the rows of the balanced partition
of n of height d can be partitioned into a (balanced) partition of n — k and a (balanced)
partition of k. Otherwise we call the triple (n, k, d) unbalancing.

Remark 7.17. Letting ¢ = L%J and r = n — qd, the triple (n, k, d) is balancing iff there
are integers 0 < s < r and 0 <t < d—r such that k = s(q+ 1) +tq. This is equivalent to

the existence of an integer max{0, %dl_r)} <'s < min{r, q_’i—l} such that £ = s mod g.
7.2.2. Unbalancing triples. First, we maximize A(uWv, u, v) when (n, k, d) is unbalancing.

Lemma 7.18. Let k,n,d be positive integers with k < n and n > d. If % € N, then the
rows of the balanced partition X\ of n of height d can be split into a partition of k and a
complementary partition of n — k.

Proof. Write
n=qd+r, 0<r<d,
so that the balanced partition A consists of r x (¢ + 1) and (d —r) x q.

Set
dk
—_ — e

n

t N.
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Because k£ < n, one has t < d. Now define
rt (d—r)t
o YT Ta

Hhen (n—qd)t nt dk
n—gq n n
= T gt=— —qt=k—qt
so x,y € N. Further, x +y =1, x <r, and y < d — r. Finally,
i t t
zg+) +yg=qla+y)tr=qg+—=(gd+r)z=n-=*k

Hence taking x of the “large” parts of A\ and y of the “small” parts gives a partition of k,
and the remaining parts sum to n — k. [

Lemma 7.19. Suppose (n,k,d) is unbalancing. Let e be the largest integer such that
L"TT’“J > (ﬁ], i.e., the tail of the balanced partition of n — k of height e is at least as big
as the head of the balanced partition of k of height d — e.

Then

(7.8) e= {d(l - S)J .

Proof. Since (n, k, d) is unbalancing, the head of the balanced partition of n — k of height
e+ 1 is at most as big as the tail of the balanced partition of k of height d — e — 1. This
yields the following two inequalities,

n—k k n—k k
> < |—-—].
e “|ld—e]l’ e+1| " |d—e—1
n—k k n—=k k
> <

e ~d—e e+l " d—e—1
Clearing denominators yields

dn—Fk)—en>0, dn—=k)—(e+1)n<0.

In particular,

The two inequalities imply

Since e is an integer, this is equivalent to

L) P

n n

As (n, k,d) is unbalancing, ‘i—k ¢ N by Lemma 7.18, whence

[Mw_lz{MJ,

and (7.8) follows. |
Lemma 7.20. Let k,n,d be positive integers with 2k <n and n > d. Then
k k
. ~3) ] > d- S
(7.9 a(1-2)| = @-n(i-1)

holds if and only if, letting dk = r mod n, one has
re{0} U {k,k+1,...,n—1}
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Equivalently, inequality (7.9) fails precisely when
1<r<k-1.

Proof. 1f r = 0, then (7.9) holds. Thus assume r > 0. Set

(7.10) A:d(1—5), B:(d—1)(1—5>.

n n
Then

k k
Al >B < LAJ+(1—E> > A e {4} < 1--,
where {A} = A — |A].
From (7.10) we have
-
A} =1——.
ay=1-"
Thus &
{A} <1—-—- = r>k,
n
as claimed. ]

Corollary 7.21. Suppose (n, k,d) is unbalancing. Let dk = r mod n for 0 <r <n. The
mazimum of A(uW v, u,v) equals

2% ([a(1-5) | +n—k) ifr>k
2(n — k) (d— Ld(l—%)J —1—|—k> ifr < k.

Proof. Let ¢’ = |d(1 — £)]. By Lemma 7.19, ¢’ is the largest e such that A = (u,v), with
balanced p - n — k of height e and balanced v I k, is a valid partition of n. If » > k, then
e > (d—1)(1 — &) by Lemma 7.20. Thus, A(u W v, u, v) is maximized at the balanced
p = n — k of height €', the balanced v F k and pW v = (i, v) by Lemmas 7.14 and 7.15.
If 0 < r <k, then Lemmas 7.20 and 7.15 show that A(u W v, u,v) is maximized at the
balanced p F n — k of height ¢’ + 1, the balanced v F k and pW v = (v, ). In both cases,
the value of A(pW v, p,v) is then given by Lemma 7.12. |

7.2.3. Balancing triples. Next, we maximize A(u W v, u,v) when (n,k,d) is balancing.
Throughout this section let n, k,d € N satisfy 2k < n and n > d. Put
(7.11) q:LgJ, r=n—qd (0<r<d),
so the balanced partition of weight n and height d is
A =(q+1,...,9+1, q,...,q).

TV
T TOWS d—r rows

Lemma 7.22. Suppose d | n, and let ¢ = 5. If ¢ { n —k, then the triple (n,k,d) is

unbalanced and thus handled by Corollary 7.21 above. If ¢ | n — k and n — k = eq, then
the mazimum of A(uW v, p,v) is attained at = (¢°), v = (¢*=¢) and equals

(7.12) 2k(n — k) (1+ %)

Proof. Let A\ = pWwv. Letting ut denote the balanced partition of n — k of height e + 1,
and v the balanced partition of k of height d — e — 1, we have A™ = (v, u*) F n. Thus

AN v o pT)y=2n—k)(k+d—e—1),
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and using e = , we get

A(A7 v, M) - A()\+7 V+7M+) = 2(” B k) > 0.

d(n—k)

Increasing e further will decrease the height of v and thus by Lemma 7.14 only decrease
the value of A. Thus the maximum A is attained at g = (¢°) and v = (¢*°¢), as claimed.
The formula (7.12) now follows from Lemma 7.12. |

Proposition 7.23. Suppose - n—k and v & k are balanced, with 1 = vy and ht(p) = e.
Let s be such that p1; = -+ = g > plsy1 = -+ = lbe. Then

(7.13) Ap Wy, p,v) =2(=k +k(n +s) + (d —e)(e — s)pe),
and this function of e is maximized at

C—i—l— n — 2k
2 2(q+1)

Proof. Since pu, v are balanced and p; = 1, we have

e =

,UH'JI/:(:ula'"7:“371/7,us+1>~"7,u6)-

A similar calculation to the one in Lemma 7.12 gives
(7.14) Alpw v, pu,v) =2(—k* + k(n+s) + (d — e)o),

where 0 = pg11 + -+ + fte = (€ — s)pe. Note that (7.14) becomes (7.6) when s = e, and
hence pp W v = (u,v). Moreover, when s = 0 and p W v = (v, ), then ey = n — k and
hence (7.14) becomes 2(n — k)(d — e + k), i.e., (7.6) with k and e replaced by n — k and
d — e respectively.
Expressing s from
n—k=s(g+1)+ (e —s)q,

where ¢ = |4, and plugging it into (7.14) produces a concave quadratic function in e,
namely

(7.15) A= 2( — (¢ + ¢*)e* + (dg — 2kq + ng + dg*)e — 2k* + 2kn + dkq — dnq).

This function attains its maximum at
d n — 2k
7.16 f = — 4+ — . [ |
( ) 2 2(q+1)

Remark 7.24. Using the obvious inequalities

e frf <

d d
we obtain the following bounds on e*:
d d(n—2k) k
-+ - L <ef<ddl1—-—).
2 2@drn) - ° ( n>

Assume (n, k,d) is balancing, and w.l.o.g., n — k > k. The strategy of the proof is as
follows: by Lemmas 7.10 and 7.11, we know that A(uWv, u, v) in (7.5) is maximized with
ht(u) = ht(v) = d and u = n — k, v F k being balanced. Such pairs are thus uniquely
determined by e = ht(u). Note that pWv = (pu,v) for small e, and pWv = (v, pu) for
large e. By Lemma 7.14, A increases while y forms the top rows of pWv and e increases.
Conversely, A decreases when v is the top of u W v and e increases. It is thus key to
analyze transitions, where the rows of u, v appear mixed in p W v.
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For ease of notation, let pule] denote the balanced partition of n — k with height e.
Similarly, v[e] denotes the balanced partition of k& of height d — e. Let

(7.17) eozmax{ee{l,...,d—l}: {";sz[diH.

Since n — k > k, e = 1 belongs to the right-hand side set. Similarly, let

(7.18) elzmin{ee{l,...,d—l}: Ldﬁ@JZ[n;ﬂ}'

If the set in the definition of e; is empty (e.g., n =5,k =2, d=2), weset ey =d—1. By
Lemma 7.14, the e maximizing the d-QMC Hamiltonian for K,,_ ; will satisfy eg < e < e;.
Let Ay, denote the balanced partition of n with height d. Set

€ := {e | ple] is a subpartition of Ay, } C {eg,e0+1,... €1}

Since (n, k,d) is balancing, & # (). Further, e € € iff e = Zf’f <r, or L”;kj = ¢ and

n—k—r < < d+n—k—r
¢ ==

Lemma 7.25. The feasible set € is an interval, that is, € = {min & min €+1,... max &}.

Proof. Recall the unique balanced partition A 5 of n into d parts consists of r parts of
size ¢ + 1 and d — r parts of size q. Suppose e < €’ are both in €. Thus there exists a
height e subpartition p = n — k of A 5 Similarly, @/ < A o 1S a height €’ subpartition
with weight n — k. We claim that for any integer e” such that e < ¢” < ¢, there exists a
height e” subpartition u” = n — k of A o
The partition p is of the form, say, ((q + 1)*, ¢¥) for some x,y € Ny. Thus
r+y=e,
(7.19) z(g+1)+yqg=n—Fk,
0<z<r and 0<y<d-—r.

Substituting y = e — x into the second equation of (7.19) gives

(7.20) r+eq=n-—k.

Likewise, if 4/ = ((¢ + 1)¥,¢¥") for some 2/,y’ € Ny, then

(7.21) ' +eqg=n—k.
Equating (7.20) and (7.21), we have

(7.22) x—a' =q(e —e).

Since e < €/, x > x/. Further, by considering the difference in the number of ¢-sized parts:
y—y=(-a)—(e—z)=(—e)+ (z-2)

(7.23) , , ,
=(e—e)+q(e—e)=(1+q)(e —e),
whence ¢’ > y.

Now, let ¢’ be an integer such that e < ¢” < ¢’. Define d = ¢’ —e. Then 0 < Ae < ¢/ —e.
We propose constructing p” composed of z” parts of size ¢ + 1 and 3" parts of size ¢,
defined as follows:

2 =x—qd

7.24 .
(7.24) y' =y+(1+q)o
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We shall verify that p” satisfies the required conditions.
Firstly, the height of p is
W )=2"+y"=x—q¢)+y+1+qd)=(@+y)+d=c+ (" —e)=¢".
Next, " Fn —k, as

(g +1)+y'q=(x—qd)(g+ 1) + (y+ (1 +q)d)q
= (z(g+1) +yq) = (@ +q)d+ (@ + ) =x(g+1) +yg=n—Fk.
Finally, we need to show 0 < 2"’ <rand 0 <y” <d—r. Clearly, 2" =x—q¢d <x <r.
Also, 2" =2 —q0 > x —q(e¢/ —e) = 2/ > 0. To verify the desired properties of y”, we
have y" =y+(1+q)d >y >0,andy’ =y+ (1+q)e<y+(1+q)(e —e) =y <d—r.
This completes the proof. [ |

By definition of ey and e;, whenever e < ¢, the partition A = n made of rows of

plel,viel is (ule],vle]). If e € €, then this partition A equals Ay , and is of the form

A= ([1y ey sy Vs flsity -« -5 fle), WheTe fig =« = g > figy1 = -+ = [ (note the two
edge cases, s = 0 or s = e can also both occur). If e > ey, then A is of the form (v[e], [e]).
Note that (uleo], v[eo]) may or may not be balanced, and the same holds for (v[e;], ulei]).

Lemma 7.26. If ey & &, then ey + 1 € €. Likewise, if ey & &, thene; —1 € €. In
particular, € is one of the following four discrete intervals:

{60760+1a"'761}7 {60760+17"'a61_1}7 {€0+17€0+2;"'761}7 {60+1760+27"'761_1}'
Proof. Suppose eg ¢ €, and consider ey + 1. By definition of ey,

n—k - k

60+1 d—€0—1 ’
Since min € > eg + 1, we deduce

n—=k n—=k k k

7.25 < <|l—<|—].
(7.25) Lnin@J - LO+1J [d—eo—l-‘ - [d—miné-‘

By definition of &, the partitions p[min €], v[min €] combine to form A g Whence

k n—=k
— < 1.
d — min & min €& | —

Hence the same holds with min € replaced by ey + 1 by (7.25). Thus pley + 1], vleo + 1]
must combine to form )‘414 , too. That is, eg + 1 € €.

The proof for e; is the same. [ |

7.2.4. Summary. We combine the preceding results on unbalancing and balancing triples
into the following statement.

Theorem 7.27. Let n > 2k and n > d. Let e, be the closest integer in € to e*. Then
the mazimum of A(pWv) = Nywy — n, — Ny for pn —k and v = k is attained at one of
the following pairs:

(a) p is balanced of height eq and v is balanced of height d — ey;
(b) p is balanced of height e, and v is balanced of height d — e,;
(¢) p is balanced of height e; and v is balanced of height d — ey .
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Proof. If the triple (n, k,d) is unbalancing, then € = (), and the maximum is attained
at (a) or (c) by Corollary 7.21. Now suppose that the triple (n,k,d) is balancing. By
Lemma 7.14, the maximum of A(puWwv, u, v) is attained for a balanced p b n — k of height
e and a balanced v F k of height d — e, where e is an integer between ¢y and e;. The
characterization of € as in Lemma 7.26 and maximization of the function (7.13) at e* in
Proposition 7.23 show that the maximum is attained for e € {eg, e1, e, }, which gives rise
to the cases (a), (b) and (c). |

Proposition 7.8 and Theorem 7.27 resolve the d-QMC problem for K, when either
k or d is small.

Corollary 7.28. Let k <4 and d < n. Let e, be the closest integer in € to e*. Then the

solution to the d-QMC problem for K, _ is the biggest of the following three values
Nuewr — M — My

for ukn—k and v =k, where either

(a) w is balanced of height ey and v is balanced of height d — ey;
(b) p is balanced of height e, and v is balanced of height d — e,;
(c) w is balanced of height ey and v is balanced of height d — ey .

Corollary 7.29. The solution to the 3-QMC problem for K, _j is
2k+1)(n—k) ifn<3k
2k(n—k+2) ifn>3k

Proof. Observe that e; = 2 for all n > 2k, and that eqg = 2 iff n > 3k; otherwise ¢y = 1.
Thus if n > 3k we are in case (c) of Theorem 7.27.
By Theorem 7.27, there are only two cases to consider: A = p W v with

et (B ) o oo (2] [£5]) o0

In the first case A = (u, v) and thus

(7.20 === =201 ([5] + 3])
— 2k(n—k+1).

Now assume n < 3k, and consider the second case. Then pWv = (k, [—] , L—J), SO
(7.27)

e B ) B )
(T (e
= (- [5]ren-r) + (L”;“J-m)
_(V;kJ‘%2+({ |- Q (n— k) +n” +4

= 2(k + 1)(n — k)
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The difference between (7.27) and (7.26) is
2k(=1+k—n)—2(1+k)(k—n)=2n—4k>0

since n > 2k. In particular, for d = 3 we are always in case (c) of Theorem 7.27.
If n > 3k, then pWr = ([”Z;ﬂ , \_"T_kj , k;), and a similar calculation to the above shows
that

(728) Nuey — N — Ny = 2]{}(71 —k+ 2)7

concluding the proof. [

(n,k,d) |eg|er| €| emax ¢ (n,k,d) |eg|er| e | emax ¢

(4,2,3) [1]2]2]1,2[{1,2} (8,42 [1[1]1] 1 {1

(5,2,3) |1 ]2 I 2 | {2} (8,4,3) [1]2]2]1,2 {}

(5,2,4) |23 ]2 2 |{2,3} (8,4,6) | 2|43 | 3 [{23,4}
(8,2,3) |2 22| 2 | {2} (9,4,3) [1 ]2 ]2 2 {}

(9,2,8) |6 | 72| 6 |{6,7} (9,4,4) | 232 2 {2}

6,3,4) [ 1]3]2| 2 | {2} (9,4,5) [ 2|3 || 3 {3}

(7,3,4) | 232 2 | {2} (11,4,4) | 2 [ 3] 2| 2 {3}

(11,3,5) | 3 | 4 || 3 | {4}

TABLE 1. A selection of triples and the values of ey, e1, €*, enax, and
¢ for these triples. The triple (11,3,5) is an example where the optimal
A = pu W v is not balanced. The triples on the right side demonstrate that
any assortment of cases (a),(b),(c) in Corollary 7.28 can give rise to the
maximum value.

8. SEPARATION OF IRREPS IN d-QMC

Given n,d € N and a partition A\ = n with at most d rows, we are interested in
adapting the NPO hierarchy in Section 5 to compute the largest eigenvalue of H) for a
general weighted graph G on n vertices. To isolate the irreducible representation p, of
ASva = F /T84 corresponding to the partition A of n, one needs to adjoin to Z5¥¢ some
polynomials in F,, that vanish in p)(CS,,), but not in p,(CS,,) for any p # .

In general it suffices a add a single polynomial, chosen as follows. Given a partition
A nlet sy € CS, be a Young symmetrizer corresponding to A [Pro07, Section 9.2.2].
Then dir;l!p* sy is a primitive idempotent in CS,, that generates p,, as a left ideal [Pro07,
Theorems 9.2.4.1 and 9.2.4.2]. Hence

d
1mp,\ Z gsyo !

O'GSTL

is a centrally primitive idempotent in CS,,, generating p, as a two-sided ideal.

Proposition 8.1. Let A - n. Then py(id —55) = 0 and p,(id —35) # 0 every partition
pF A

Proof. The centrally primitive idempotents {3y } -, are pairwise orthogonal, so (id —8,)3,, =
0 if A = p and §, otherwise. Therefore py(id —5)) =0 and p,(id —5)) #O for p#A. m
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Lifting 5, to an element of F,, yields the desired polynomial. However, this polynomial
has high degree (not much smaller than n). On the other hand, the symmetric group
relations (1.4) have degree at most 3, and the degree-reducing antisymmetrizer relation
(3.1) has degree d. Therefore the above approach is not appealing from a computational
perspective. Instead, it is preferable to find low-degree polynomials that distinguish A
from other partitions of n with at most d rows.

In [BCEHK24] it was shown that for d = 2, the value 7, from Example 6.6 separates
irreps with at most two rows. Therefore, ny — hg, is a linear polynomial that separates
irreps of AS"2. In particular, the largest eigenvalue of H) for a two-row partition A - n
equals the NPO problem

min {a oo — hg = Zs;;sk + ¢ for some s, € F,,, q € Iswd + (m — hKn)} ,
k
and can thus be handled using standard SDP-based NPO hierarchies.

The same does not apply when d = 3, as 7, in (6.4) does not separate irreps with
at most three rows. For example, partitions A = (4,1,1) and p = (3,3) of n = 6 give
nx = 1, = 24. Even more, 1, does not separate irreps with three rows; e.g., A = (5,2, 2)
and p = (4,4, 1) give ny =1, = 60. Below, we present a method of separating irreps with
at most three rows in the spirit of 3-QMC, and a method of separating general irreps that
is suitable for solving the localized d-QMC problem of finding the largest eigenvalue of
H.

8.1. Separation of irreps with at most three rows via two graphs. First we show
that the spectra of the Hamiltonians corresponding to the clique K, and the star graph
%, (which were analyzed in Subsections 6.2 and 7.1, respectively) distinguish partitions
with at most three rows.

Proposition 8.2. Let n > 2. The following are equivalent for partitions \, pu = n with at
most three rows:

(i) spec(Hy, ) = spec(HYy ) and spec(Hy ) C spec(HY );
(i) spec(Hy ) = spec(HY );
(i) A = p.
Proof. It is clear that (iii) implies both (i) and (ii).
(i)=(iii): By Example 7.1 and Example 7.3, the eigenvalues of nI — Hy are obtained

from the sequence A\; > Ay — 1 > A3 — 2 by keeping only the smallest element of any
subsequence of consecutive values, and then removing —2 if necessary. Consequently,

(8.1) M+ A=+ Ns=2)=n—=3=pm+(p2— 1)+ (us — 2)
and spec(Hy ) C spec(HY ) immediately imply X =y if |spec(Hy, )| > 2. Now assume

n

| spec(Hy, )| = 1. By Proposition 6.7, spec(Hy, ) = spec(HY ) implies
(8.2) M+ e =17+ (s = 2)" = g + (2 — 1)" + (s — 2)°
We distinguish three cases:

1) A = (2,2 %) and the sole eigenvalue of n/ — 1H} is & — 2. Since pu > 2, if
37373 2%, 3 3

follows that pip —1 =% — 2 or uz —2 = % — 2. In the latter case = A, so let us
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suppose the former holds. Then (8.1) and (8.2) imply
n—=3=m+(5—2)+(us—2),
E+E -1 +G -2 =m+ (G -2+ (s —2)"
Expressing us = %” + 1 — py gives
52+ G -1 =+ (5 —m—1)7%
which has solutions p; = ¢ and p; = ¢ — 1. The first one implies 1 = A, while

the second one contradicts the fact that p is a partition of n.

(2) A= (%,%), and the sole eigenvalue of nJ — 3 Hy is % — 1. Since g < %, it follows
that gy = § —1or pup —1 =5 — 1. In the latter case p = A, so let us assume the

former holds. Then (8.1) and (8.2) imply
n=3=(5—1)+(p—1)+(us—2),
(5 + G-+ 0-2" =G -1+ (= 1)+ (s - 2)"
Expressing pp = § + 1 — us gives
(5)" +4= (5 — )"+ (13— 2)",
which has solutions p3 = 0 and pz = 5 + 2. The first one implies ;1 = A, while the
second one contradicts the fact that u is a partition of n.
(3) A = (n), and the sole eigenvalue of nl — $Hj is n. Then pz < ps < n implies
11 =n, and so pu = A.
(ii)=-(iii): As in the previous paragraph we see that (i) and (8.1) imply A = pu if
|spec(Hy, )| = 2. On the other hand, if |spec(Hy )| = [spec(H) )| = 1 then A\, p €
{(n), (2,2),(%,2,2)}. For these three cases, the star graph Hamiltonian has eigenvalue

272/ 137373
0, n+2 or 3n+4. Thus spec(Hy ) = spec(H} ) only if A = p. |

Remark 8.3. Let n = 9. For A = (3,3,3) and = (6,2,1) we have

spec(Hy, ) = {16} C {20,16,6} = spec(H} ).

Therefore the role of K, in Proposition 8.2(i) is essential (note that ), = 72 and 7, = 48).
Likewise, the restriction to partitions with at most three rows is required (cf. Remark
7.5). Namely, let n =21, A = (7,7,7) and o = (9,6,5,1). Then 7, = 336 = 1), and

spec(Hy, ) = {16} C {12,16,18,23} = spec(H) ).

Let A = n be a three-row partition, and let m be the minimal polynomial of H *n;
note that m is of degree at most 3, and determined by Example 7.3. As a consequence of
Proposition 8.2, the largest eigenvalue of H} for d = 3 is the solution of the NPO problem

min {a oo —hg = ZsZsk + ¢ for some s, € F,,, q € ISW?’ + (m — hKn,m(h*n))} .
k

8.2. Separation of irreps via low-degree central elements. In this section we show
that partitions A F n with at most d rows can be distinguished by d relations of degrees
1,...,d, which can be used in an NPO problem for solving the localized d-QMC problem,
i.e., finding the largest eigenvalue of H}.
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For 2 < k < nlet ¢, € C[S,] be the sum of all k-cycles in S,, (there are (k — 1)!(}) of
them). Since gy, is central in C[S,,], we have px(gr) = vk I, where

n

53) 1 (0) = Te(pa(a) = (= () w1 40

Note that .
d(d—1)(2d - 1) 2
2
=1\ = — A — (k=1
VoA =M =N+ 6 ;(k ( )
by Proposition 6.7. The other values 7; x can be computed using the normalized character
formula [Lsa08, Theorem 4] (with the Murnaghan-Nakayama rule, cf. Appendix D.1, at

its core), and are in particular integers. For example,

XA((l 23))
xa(e)

YA =5 -n(n—1)(n—2)

_ _(n> Ly <()\k — &) (e — k+61)<2(x,€ ORI 1)/2(2k - 1))

=
Il
—

d(d —1)%(d — 2 n =) O —k+ D20 — k) + 1
_dd-1) )—(>+Z( )( +6)(( )+ 1)

k=1

using the formula after [Lsa08, Theorem 4]. The values 7\ separate irreps as follows.

Theorem 8.4. If \, u = n have at most d rows, then
A=p = Yer=Yep foralk=2,...,d.

Proof. Let pgy = a% + -+ + 2% denote the kth power-sum symmetric polynomial in d
variables. Let A = n have at most d rows, and write A; = 0 for ht(\) < ¢ < d. By (8.3)

we have
— ptk (1. k))
xXx(e)
where n** is the falling factorial. By [VK81, Lemma 5.1] or [I002, Propositions 1.4, 3.3
and 3.4],
(84)  kya= (pd,k; + Pi(paa, - -- ,pd,k_1)> M=14+2x-2+1,..., Ag—d+3)

for some polynomial Py in k — 1 variables. Also note that

k’Yk,,\

par(M -1+ n—2+L N —d+l)=n-2L.
Now assume that v, = vk, for all k =2,...,d. By (8.4),
Par(M—1+5, =243, Aa—d+3) =pax(mn =145, 2 —2+3%, .., a—d+3)
forall k=1,...,d. Since
M—l+i>x-2+1> >N —d+Li w-1+i>p-2+1> >p—d+1

and the power-sum symmetric polynomials distinguish points up to a coordinate shuffle,
it follows that A = pu. [
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For k € N denote

Cp = E swap; ;, SWap;,;, - - Swap;; € Fp
1<, ix<d
pairwise distinct,
ig<iy; for j>1

which corresponds to gx1 € C[S,]. By Theorem 8.4, finding the largest eigenvalue of the
localized d-QMC Hamiltonian H} (for ht(\) < d) is equivalent to the NPO problem

min<a:a—hg = Zs};sk—l—q for some s € F,, ¢ EISWd + (c;€ — Vepn: bk <d— 1)
k
As in Section 5, this NPO can be solved through a hierarchy of SDP relaxations.
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APPENDIX A. LINEAR SUBSPACE OF Mgy»(C) SPANNED BY THE PRODUCTS OF AT
MOST d — 1 SWAP MATRICES

Here we prove that in M5V4(C), there are no relations of order at most d — 1 (in the
swap matrices, represented by transpositions) other than (4.1).

Remark A.1. Note that if a permutation ¢ is a product of disjoint cycles of lengths
lq, ..., 0 respectively, then o is can be written as a product of Zle(&- — 1) transpositions
(and not fewer than than many transpositions).

First we note that linear independence of swap operators is preserved if the local di-
mension increases.

Lemma A.2. If a set of products of swap operators is linearly independent in M>"4(C),
then it is linearly independent in MSW‘”I(C).

Proof. By Theorem 2.2, the algebra M5V¢(C) can be obtained as a quotient of MY (C),
namely by modding out the direct summands p,(CS,,), where X is a partition of n with

exactly d rows. The statement then follows since any linearly independent set in a quotient
Mswd“(C) is linearly independent in Mswd“(C). n

The following statement is the main result of this section.

Proposition A.3. The set of all products (that correspond to distinct permutations) of
at most d — 1 swap matrices is a basis of the subspace of M%4(C) of polynomials in the
Swap;; of degree at most d — 1.

Remark A.4. In other words, Proposition A.3 states that permutations, which are prod-
ucts of at most d — 1 transpositions, are linearly independent as elements of MS5%¢(C).
In Section 5, we mentioned another natural linearly independent subset of M5%¢(C). Re-
call that a permutation 7 € S, is called (d 4 1)-good if there is no increasing sequence
Jo < -+ < jaqsuch that w(jo) > --- > m(ja). Then (d+ 1)-good permutations form a basis
of M5¥4(C) by [Pro21, Theorem 8]. However, Proposition A.3 is not a direct consequence
of this result. Namely, a product of at most d — 1 transpositions is not necessarily a
(d+1)-good permutation if d > 3. Concretely, the product of d — 1 disjoint transpositions
= Hf;ll(i, 2d — 1 — i) satisfies w(1) > 7(2) > --- > 7(2d — 2), so it is not 2(d — 1)-good
(and in particular, not (d 4+ 1)-good if d > 3).

Before proving Proposition A.3, we require two lemmas.

Lemma A.5. Let o be a permutation in S, that is a product of d — 1 transpositions and
cannot be written as a product of fewer than d — 1 transpositions. Let v € (C)®" be
an elementary tensor whose factors are standard basis vectors (so that v has at most d
distinct indices). Suppose that for any product T of k disjoint cycles of o, where k = 1,2,
the part of v on which T acts has at most k — 1 indices that are repeated and they occur at
most twice. Then o acts uniquely on v among the products of at most d—1 transpositions.

Proof. Let ¢ and v be as in Lemma A.5. If ¢ is a permutation on strictly less than n
letters, add to its cyclic structure the singletons corresponding to the missing letters in
{1,...,n}.

First suppose 7 is one of the disjoint cycles of ¢ and let w be the part of v on which 7
acts. If w has an index that appears at least twice, then one can construct at least one
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other permutation 7’ that is a product of at most as many transpositions as 7, and gives
the same result when applied to w. Indeed, to find the first cycle of 7/, start with the
index of w that is repeated, then find its image among the remaining indices, take the
image of the latter and continue until the starting index occurs again. Since the starting
index occurs at least twice in w, the produced cycle is of smaller length compared to o.
Now repeat the procedure starting with any other index to deduce what the other disjoint
cycles are. This way we break the action of o on w into an action of a product of disjoint
cycles (some of them may have length one) whose lengths sum up to the length of o.
Hence their product can be written as a product of strictly less than d — 1 transpositions.

Now let 7 = 7173 be a product of two disjoint cycles of o and let w; and w, be the parts
of v on which 7 and 7 act, respectively. Suppose that none of w; and wy has repeated
indices, but they do share at least two indices. For simplicity suppose they share exactly
two indices. We want to construct another permutation 7’ that is a product of at most as
many transpositions as 7, and gives the same result when applied to w; ® ws. As before,
for the first cycle of 7/ start with one of the indices with two occurrences in wy, say ji,
then find its image among the remaining indices, take the image of the latter and continue
until j; occurs again. Note that the first time when the image of a letter is the other
index with two occurrences, call it jo, there are two choices: to consider the image of 7,
by either 71 or 7 and then continue the process until the image of a letter is j; again.
Note that if we choose to continue with 71(js), we get back 7, but if we consider 7(j2),
we switch to the other cycle and finish with the factor e;, of w,. Hence, the second option
produces the first cycle of the permutation 7/ we are looking for. For the second cycle of
7’ restart the procedure with the index j, of a factor in w;. By construction, 7 is also a
product of at most d — 1 transpositions.

It remains to prove that if o meets the conditions in Lemma A.5, then it acts on v
uniquely among the products of at most d — 1 transpositions. This is true by the same
procedure as above of deducing the cyclic structure by comparing v to its image o(v).
Indeed, start with any index, take its image and continue until the starting index occurs
again.

The only time we have two options during this process is when we hit an index j in
v that occurs (exactly) twice across two cycles, say 71 and 75. Denote the parts of v on
which 7; acts by w;. Suppose we started the process with j in 7;. When we hit j again, we
can either terminate the process (which yields the cycle 1) or continue with the image
of 7 by 7. In this case we join the two cycles 71 and 75, which means that the resulting
permutation must have at least one transposition more than o.

If we start with an index k # j of 7, then, when we first hit j, there are again two
options: either to continue with 71(j) or 7 (7). The choice 71(j) at the end reproduces
71 (actually, it may happen that the index k occurs in another cycle, say 73, and we
may switch to 73 after hitting k again, but this case was already treated before). With
the choice 75(j) we switch to the other cycle 75 and since k does not occur in wy, the
process does not terminate in wy (meaning that we need to switch cycle once more before
terminating). This again means that we join (at least) two cycles and the resulting
permutation must have at least one transposition more than o.

This shows that ¢ is the only permutation that can be written as a product of at most
d — 1 transpositions and gives the result o(v) when applied to v. u
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Example A.6. Let d =4,n =5 and define o = (12)(345). Let
vV=e1®ea®e;Rea®e; and vy =e1 ®ey®e; ® ez ®ey.

It is easy to see that since o has two disjoint cycles and v; has two indices that occur twice,
o acts on vy in the same way as ¢’ = (14)(253). On the other hand, by the algorithm of
deducing the cyclic structure by comparing a vector to its image, o acts on vy uniquely
among the products of at most 3 transpositions in S;.

Lemma A.7. Let o in S, be a product of d — 1 transpositions that cannot be written as
a product of fewer than d — 1 transpositions. Then there is a vector v € (C4)®" whose
tensor factors are standard basis vectors with at most d distinct indices that meets the
conditions in Lemma A.).

Proof. Let ¢ € S, be a product of d — 1 transpositions which cannot be written as a
product of less than d — 1 transpositions. Suppose o is a product of k£ disjoint cycles for
some k =1,...,d—1 (all the cycles being of length 2 or more). Hence, ¢ is a permutation
on d+ k — 1 letters, but the factors of v are chosen among the d standard basis vectors
of C.

Without loss of generality assume that the letters of o are 1,...,d + k — 1. Order the
cycles of o increasingly by their lengths. Then assign the indices i; to the first d +k — 1
factors e;; of v in the following way:

Assign indices 1,...,d (e.g., increasingly according to the position of the factors) to
the part of v on which the cycles of ¢ involving letters 1,...,d act (the cycle with d may
involve larger indices and hence we do not yet assign the indices to all of the factors of
v on which this cycle acts). Now v has k — 1 more factors to be labeled (with indices
between 1 and d), hence the corresponding part of o has at most |(k — 1)/2] disjoint
cycles. Since we have k cycles in total (each of length at least 2), the part of o on the
letters 1,...,d is a product of at least |(k+ 1)/2] disjoint cycles.

So assign to the next |[(k — 1)/2] unlabeled factors of v (e.g., increasingly according
to the position of the factors) the first letters of the cycles of o on the letters 1,...,d.
Finally, assign to the remaining unlabeled factors of v the second letters of the cycles of
o on the letters 1,...,d.

This way we labeled the first d + k£ — 1 factors of v. To the remaining factors just assign
the index 1. It is now clear from the construction that the obtained vector meets the
conditions in Lemma A.5. [

Example A.8. Let us illustrate Lemmas A.5 and A.7 in the case n = 8 and d = 5.
Suppose o € Sy is a product of 4 transpositions and it cannot be written as a product
of less than 4 transpositions (here we omit writing the singletons in o). Then we have 4
options:

(a) If o is a 5-cycle, e.g., 0 = (12345), then a suitable vector is
v=e1QeRe3s®esRVe; Qe Qe ey

(b) If o has two cycles, there are two possible cyclic structures: two 3-cycles or a
product of a transposition and a 4-cycle. E.g., o = (123)(456) or o = (12)(3456).
In both cases we can take

U:61®62®63®64®65®61®61®61-



48 I. KLEP, T. STREKELJ, AND J. VOLCIC

(c) If o has 3 cycles, then it must be a product of two transpositions and a 3-cycle.
E.g., if 0 = (12)(34)(567), we can take

V=61 QeRe3®es®e;Ker ®es ®e.

(d) If o has 4 cycles, then it must be a product of four transpositions. If, e.g., o =
(12)(34)(56)(78), we can take

v=e18eRe3ResQe; e ey ey.

Proof of Proposition A.3. Denote the set of all products (that correspond to distinct per-
mutations) of at most d — 1 swap matrices by B,;_1. Suppose

Z ass =0

SEBy_1
for some scalars a;. By Lemma A.5 and Lemma A.7, for each product s of d — 1 trans-
positions that cannot be written as a product of less than d — 1 transpositions there is
an elementary tensor vector v, € (C%)®" such that s acts uniquely on v, among the el-
ements of lgd_l. Since elements of Bd_1 act on (C%)®" as permutations of tensor factors,
this means that s - v, is linearly independent of {t-v,: t € By_1 \ {s}}. Hence, a, = 0 for
all s € By_; that cannot be written as products of less than d — 1 transpositions. Now
use induction and Lemma A.2 to finish the proof. [

APPENDIX B. PROOF OF PROPOSITION 7.8

Recall that for any partition ( = ((i,...,(y) of an integer m, we define the function
n(¢) as:
dd—1)(2d—1) <& .
— 2 2
n(Q) =m?+ : —;@i—(z—l)).
Our first goal in this section is to derive a formula for
(B.1) A, pyv) = n(A) = n(p) = n(v)

in terms of the contents of the boxes of the skew-shaped Young diagrams associated with
these partitions. The content of a bor at row r and column ¢ in a skew-shaped Young
diagram ( is defined as content(box) = ¢ — r (not to be confused with the content of a
Young tableau as in Section 7.2.1). Let 3(() denote the sum of contents of boxes in the
skew-shaped Young diagram ¢ (or the Young diagram of , if the latter is a partition).

Lemma B.1. Let A\Fn, uFn—Fk and v+ k. If i is contained in A, then
AN, p,v) =2k(n — k) —25(\/p) + 25(v).

Proof. By [Lsa08, Theorem 4] or [Fro00], contents of boxes in a Young diagram of ( - m
ij

are related to the character of ( as X;(C((;))) = (g)_lE(C). By Lemma 6.5,

(B.2) n(¢) = m* —m — 25(¢).

We replace n(\), n(u),n(v) in A(X, p, v) with (B.2), and note that X(A\/p) = (X)) — X(p)
since j is contained in . [ |

The rest of this appendix consists of the proof of Proposition 7.8 (stated below for
convenience) divided in several cases.
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Proposition B.2. When k < 4 or d < 3, the expression (7.5) is maximized at a triple
of partitions A\ n, p+=n —k and v = k such that A\ = pWv. For such partitions, the
coefficient C}/\U/ 1S MONZETO.

We shall also paraphrase A = W v by saying that each row of A coincides either with

a row of p or a row of v. For such a triple (A, i, ), we first check that cﬁy # 0. Since

cz‘y = cl’}“, we can without loss of generality assume that the first row of A equals the first
)\/

“n, Where X', 1/ are obtained from A, 1 by deleting the first row. In
the triple (X, i/, v), each row of X' coincides either with a row of 4’ or a row of v. Thus,

row of p. Then c;\w =c

we can continue inductively until one of u or v is the empty partition, and the other one
equals A (in which case the corresponding Littlewood-Richardson coefficient is nonzero).

Such triples in particular arise as follows. Let p be contained in A. If g and A/p do not
share any rows, then p is a subpartition of A and A/ is a partition, and A = pwW A/pu =
(1, A/p). The relation “u and A/p do not share any rows” will thus frequently appear in
the proof of Proposition B.2 below.

The proof of the first (main) statement of Proposition B.2 relies on particular joint
rearrangements of partitions A, u, v that arise from moving a single box. Assume C;/\w #0
(so in particular, p is contained in A). That is, one can label the skew-shaped diagram
A/ as an LR tableau with content v. A move of a box of A\/u is called a Robin Hood
move if the change in the box’s content is non-decreasing and, after the move, there
exists an LR tableau on the obtained skew-shaped diagram X' /u' with content v/ whose
height is not larger than the height of v. In particular, a Robin Hood move returns
a triple (X, p/,v") with c;\L;V, # 0, and does not decrease the A value by Lemma B.1:
A p,v) < AN, @/ V). Furthermore, it suffices to only consider moving the boxes of
A/p with minimal contents (as these minimize the increment of 3(\/u)).

B.1. Case k = 2. The partitions of 2 satisfy 7 < 1(1,1). To prove Proposition B.2 we
separate three cases, based on d — e € {0, 1, 2}.

B.1.1. Case d —e = 2. Here, \y_1, A\g equal 1 and form v = (1,1). Hence, p and A/ do
not share rows.

B.1.2. Cased—e=1. (a) If e=d—1 and Ay = 2, then A and A\/u do not share rows.

(b-1) If Ay = 1 and pg—1 = 2, then there is one \/u box in row d. Moving the other
A/p box next to it (is a Robin Hood move and hence) yields a higher A value.

(b-2) If Ay = 1 and p1q—1 = 1, let jo be the smallest row index j such that p; = 1. Then
move the \/u box that is not in row d to row jy. This is a Robin Hood move by definition
of jo, hence A increases. By exchanging \;_; with p;,, we produce a triple of partitions
with the same A value such that A\/u and p do not share rows.

B.1.3. Case d = e. (a) If ug—1 > 2, then move the the p boxes from row d to the first
row and place the two A/u boxes in row d (Robin Hood moves). This clearly increases
the value of A.

(b) If pg—1 = 1, then pug = 1. Move both p4_1 and pg4 to the first row and place the \/u
boxes in row d — 1 and d, respectively. Now the contents of these two boxes are lowered,
but the height of v may increase. We shall prove that the value of A increases in any
case.

Assume v = (2) at the start. So, after the moves, % (v) decreases by 1. Denote the two
A/u boxes by bl and b. Since the initial content of bl is > 2 — (d —2) =4 —d, X(\/u)
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increases by > 1 after the move, causing the increase in the value of A. After the move,
v is the tail of A\, so A = p .

B.2. Case k = 3. The partitions of 3 satisfy 7y < 12,1y < 7¢1,1,1)- The proof of Proposi-
tion B.2 again splits in several cases.

B.2.1. Case d — e = 3. The tail of A equals v = (1,1, 1). In this case p and A\/u do not
share any rows and we are done.

B.2.2. Case d — e = 2. The three boxes of A\/u are not stacked on top of each other. So
a minimal enumeration of A\/u does not include 3. Since the goal is to maximize A as in
(B.1), we can assume v # (1,1,1) (if we can increase the value of A(\, p,(2,1)), we can
also increase the value of A(\, y, (1,1,1))). In this case, the minimal enumeration of \/u
includes 2, so we can assume v = (2, 1).

(a) If the tail of A equals v, i.e., A\y-1 = 2,\y = 1, then A and A/u do not share any
rows and we are done.

(b) If v is not the tail of A, then two A/ boxes are in the (d — 1)st and dth row,
respectively, and the third is either in row d — 1 (in which case A = p W v and we are
done) or at the end of some p-row. Assume the latter.

(b-1) If pg > 2, then the third box is moved to the (d — 1)st row. In this case p and v
stay the same, but A is changed via a Robin Hood move. Hence the value of A increases.
After the move, A = W v and we are done.

(b-2) If g = 1, let j be the largest row index such that p; > 1. Move the third box
of A/ at the end of row g;1;1. This move is clearly a Robin Hood move by definition of
j. Since p and v do not change, the value of A increases. Now by exchanging A\;_; with
tit+1, we see that each row of A is either a row of p or a row of v, i.e., A = p .

B.2.3. Case d—e =1. (a) If pug_1 > 3, then move the 2 boxes (that are potentially not
yet in the dth row) of A/ to the dth row. Since this process only involves Robin Hood
moves and p does not change, the value of A increases. After this move, clearly, A = pdv.

(b) If 141 = 2, then move to the dth row one of the two boxes of A/u that are not in
the dth row (this is a Robin Hood move, hence A increases).

Similarly as in (b-2) in the previous subsection, let j be the largest row index such that
pj > 2. Move the third box of A\/u at the end of row ;1. This move is again a Robin
Hood move by definition of j. Since p and v do not change, the value of A increases. By
exchanging Ag_; with 41, we see that each row of A is either a row of u or a row of v.
Thus, A = p .

(¢) Now assume pq—1 = 1.

(c-1.1) If A\y_1 = pg—1 = 1 and pg_2 > 1, then exchange the p box in row d — 1 with one
A/p box in row d — 2. To compute tha change in the value of A assume the worst case
where v = (3). After the exchange, ¥(v) decreases by 3 and ¥ (\/u) increases by 2. Now
move the remaining \/u box that is not in row d — 1 or row d to the (d — 1)st row. This
is clearly a Robin Hood move, so the value of A increases by at least 2 after this move.
The value of A hence increases after these two moves and at the end, v is the tail of A,
e, A=

(c-1.2) If A\g_1 = pta—1 = pa—2 = Ag—2 = 1, then move the p boxes from the (d — 1)st
and (d — 2)nd row to the first and the second row, respectively and move the two \/u
boxes that are not in the dth row to the (d — 1)st and (d — 2)nd row, respectively. Again,
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assume the worst case, where v = (3) at the start. Note that after the move, v = (1,1, 1).
So, after the move, Y (v) decreases by 6. However, by assumption, the contents of the
two A/u boxes that are not in the first column (call them b2 and b3), satisfy content(b2)
> 2 —d+ 3 and content(b3) > 3 —d + 3. Hence, X(\/u) increases by at least 6 after the
move and hence the value of A does not decrease. Moreover, after the move, v is the tail
of A, so A =pdr.

(c-1.3) If \y_1 = ptg—1 = pa—2 = 1, but Ag_o > 1, then first exchange the p box in row
d — 1 with a A\/u box in row d — 2. Again, assume v = (3) at the beginning. Note that
after this move, v = (2,1), so X(v) decreases by 3 and 3(\/u) increases by 2. Next, move
the remaining \/p box (the one not in the 1st column) to row d — 1. This move increases
the value of A by at least 1, so the value of A in fact increases after these two moves.
Moreover, v becomes the tail of A\, so A = p W v.

(c-2) Assume pg_1 =1 and A\g_q = 2.

(c-2.1) If Ay = 2, move the p box from row d — 1 to the first row and rearrange the v
boxes so that \y_; = 2 and \; = 1. It is easy to compute that the value of A does not
change after this move. Moreover, v becomes the tail of A\, so A = pW v and we are done.

(¢-2.2) If pg—1 = 1, A\gq—1 = 2 and Ay = 1, then move one A/ box to row d (which is a
Robin Hood move) to end up with case (c-2.1).

B.24. Case d = e. (a) If pg—1 > 3, then move the p boxes in row d to the first row
and move the A/ boxes to row d. these are Robin Hood moves, hence the value of A
increases. Now v is the tail of A\, so A = p W v.

(b) If pg—1 = 2, then move the p boxes in rows d — 1 and d to the first row and place
the A\/u boxes in rows d — 1 and d so that \;_; = 2 and Ay = 1. Doing so, the contents of
these three boxes decrease, but the height of v might increase.

So assume that v = (3) at the start. Then, after the move, ¥(v) decreases by 3. By
assumption (ug—1 = 2), each of the three boxes in A/u satisfies content(box) > 3 — d.
Hence, ¥(\/u) increases by > 3 and the value of A increases, After this moves, v is the
tail of A\, so A = p .

(c) If pg—1 = 1, then move pq, pig—1 and pg—o to the first row and move the three A\/p
boxes to rows d,d — 1,d — 2, respectively, so that A\; = A\y_1 = A\g_o = 1. Note that 3(v)
may decrease by 6 if v changes from (3) to (1,1,1). However, ¥(\/u) at the start is at
least 2-3(2—(d—2)) = 2-(12—3d) and its final value is 2- (1 —d+2—d+3—d) = 2-(6—3d).
Hence, after these moves, the value of A does not decrease. Moreover, v becomes the tail
of A\, so A =pdr.

B.3. Case k = 4. The partitions of 4 satisfy
Ny =0 <@ =8 <ne2 =12 <nei1 =16 <na11) = 24
The sum of contents 3(v) for each of these partitions v is
Y((4)=6>%((3,1) =2>%((2,2)) =0>%((2,1,1)) = =2 > ¥((1,1,1,1)) = —6.

As before, to prove Proposition B.2 we separate several cases.

B.3.1. Case d—e = 4. In this case Ay = A\g_1 = Ag_2 = A¢q_3 = 1, and none of these boxes
belong to p. Hence, A/ and p do not share rows and A\ = p W v.
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B.3.2. Case d —e = 3. (a) If u. > 2, then move the A/u box that is potentially not in
the last three rows to row d — 2 so that A\y_» = 2, \y_1 = Ay = 1. This is a sequence of
Robin Hood moves (note that the height of v at the start must have been 3, so v did not
change), hence the value of A increases. Moreover, v becomes the tail of A\, so A = pwv.

(b) If pe = 1, then let jy be the smallest j such that p; = 1. Move the A\/u box that is
not in the last three rows to row jy. Now exchanging the y box in row jo with the v box
in row d — 2 yields a (actually the same) triple of partitions (A, u, ) such that each row
of X is either a row of p or a row of v, so A = pWv.

B.3.3. Case d — e = 2. In this case v is either (3,1) or (2,2) at start.

(a) If pe > 2, then move the two \/u boxes that are potentially not in the last two rows
to the last two rows so that A\j_; = Ay = 2. Now assume the worst case where v = (3,1)
in the beginning. Clearly, after these moves, v changes into (2,2). Recall that

A =2k(n — k) + 25(v) — 25(\/p).

After the moves, the value of A decreases by 2 - 2 because v changes. However, ¥(\/u)
decreases by at least 4 because the content of each of the two moved boxes increases by
at lest two. Hence, the value of A increases with this construction.

(b) Assume p, = 1.

(b-1) Assume g1 > 2. Move p, to the first row.

(b-1.1) If ge—1 = Ae—1 = 2, then the possible starting positions with smallest content
of the remaining two boxes were (2,d — 1), (2,d — 2). In this case exchange p, with \; to
obtain a (the same) triple of partitions (A, y, v) such that A = p .

If the two remaining \/v boxes were not at positions (2,d — 1), (2,d — 2), then at least
one of them had content 3 — (d —4) = 7 — d or higher. Now move the A/u boxes so that
Ai—o = 2,01 = L,y = 1. If v = (3,1) at the start (worst case), then ¥(v) decreases
by at most 4, but X(\/u) increases by at least 4 as well (because the box with content
> 7 — d goes to position (1,d — 2)). Hence A does not decrease, but now A =y v.

(b-1.2) If pe—1 = 2 and A1 > 3, then d > 5 and \y_4 > 3. If .o > 3, move the \/p
boxes to rows d — 1 and d, respectively, so that \;_1 = Ay = 2. Also move one u box from
row d — 4 to row d — 2 (so that \j_o = p. = 2). Now v changes from (3,1) to (2,2),
hence Y(v) decreases by 2, and 3(\/u) increases by at least 4, so A increases (and now
A=pu).

If oo = 2, then v = (2,2) at the start. Move two A/u boxes to rows d — 1 and
d— 2 so that \y_ o =2 = p.+ 1, g1 = 2, \q = 1. After these moves, v does not change
and X(A/p) increases, hence A increases. Now exchange . with A\; to obtain a triple of
partitions (A, i, v) such that A = p .

(b-1.3) Assume g1 > 3. If no A\/p box is at position (2,d — 1), then it is easy to see
(as before) that moving the \/u boxes so that \j_o = 2, A1 = 1, Ay = 1, increases A
and yields A = p W v. (Note that in this case v changes from (3,1) or (2,2) to (2,1,1)).

Otherwise, if two A\/p boxes are at positions (2,d — 1), (2,d — 2), then do the procedure
from (b-1.1).

(b-2) If pre_; = 1, then let again jo be the smallest j such that p; = 1. Move p. to row
jo and move three \/u boxes so that A\y_o = 1, A\q_1 = 1, Ay = 1 and move one \/u box
to row jo+ 1 < d — 2. Now assume v = (3,1) at the start (worst case). Then after the
moves, Y (v) decreases by at most 4. The positions for A\/u boxes with lowest content are
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(2,d —3),(3,d — 3). Hence it is easy to see that the value of A increases. Again, switch
Ad—2 With pj,11 to obtain a triple of partitions (A, p, v) such that A = pww.

Note that if v = (2,2) at the start, then the remaining two A/u boxes could have been
at positions (2,d—2), (2,d—3). But in this case 3(v) decreases by 2 and 3(\/p) increases
by at least 2 as well.

B.3.4. Case d — e = 1. In this case the height of v is at most 3 at start.

(a) If pe > 4, then move all the A/u boxes to row d. This clearly increases A and
produces a triple (A, u, v) such that A = p W v.

(b) If pe = 3, then let j; be the smallest j such that p; = 3. Move the A\/u box that is
not in row d to row j;. Now exchanging the p boxes in row jg with the v boxes in row d
yields a (in fact the same) triple of partitions (A, i, v) such that A = pwv.

(c) Assume p, = 2. Note that since n — k > k, we have d > 3. If needed, move another
A/ box to row d so that Ay = 2. This move clearly increases A.

(c-1) If pe—1 = 4, then move the two remaining \/u boxes to the end of row d — 1.
Doing so, the value of A increases (even if one of these boxes was located in row d - in
that case v = (3, 1) at the beginning and (4) at the end, which makes up for moving one
box to the row above). We also have A = y W v in the end.

(c-2) If pe—y = 3, then move p. to the first row and move the \/p boxes so that
Ai—1 = 3,A\g = 1. Now if v = (4) at the start, X(v) decreases by 4 and in that case 3(\/u)
increases by at least 4. Indeed, it decreases by 2 because Ay gets moved to the row d — 1
and it then increases by at least 6 since one box gets moved to row d. In the case where
Aq = 3 at the start, we have v = (3,1) at the start. Then both ¥(v) and X(\/u) stay the
same so that A does not decrease.

(c-3) If pe—1 = 2, then move g, to the first row and move the two remaining \/u boxes
to row d — 1 so that Ag—; = A\g = 2. If v = (3, 1) at the start, that the worst case is when
Ai—2 = A\g_1 = 3 (the remaining \/u boxes are in rows d — 2 and d — 1, respectively). In
that case ¥(v) decreases by 2, but ¥(\/u) increases by 4, hence A increases. If v = (4)
at the start, then X(v) decreases by 6, but also ¥(\/u) increases by at least 6, so that
the value of A does not decrease. However, now A = p @ v.

(d) Assume p, = 1.

(d-1) If pe—1 > 4, then move three A/u boxes to row d — 1 and leave one in row d. In
this way v = (4) at the end. If only one A\/u box was in row d at the start, then this
construction is a series of Robin Hood moves. Thus A increases. if there were two A/
boxes in row d at the start (note that there could not be three or more such boxes in row
d at the start), then after the described change, ¥(v) increases by 4 and ¥ (A/u) does not
decrease. Hence, A increases and now A = W v.

(d-2) Assume p.—; = 3, then again move p,. to the first row.

If Ay = 2 (note that A\; < 2), then move the A\/u boxes so that A\q_; = Ay = 2. In this
way v changes from (3,1) to (2,2), hence ¥(v) decreases by 2, and ¥(\/u) increases by
at least 2. Thus A does not decrease but we now have A = p ¥ v.

If Ay = 1, then move the three A/u boxes not in row d to row d — 1. Now ¥(v) decreases
by at most 4, but £(A/u) increases by at least 4, hence A does not decrease and we again
have A = pWw.

(d-3) If pe—1 = 2, then note that d > 4. Now move p, to the first row and place the
A/p boxes in rows d — 1 and d so that \y_; = Ay = 2.
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Now if at the start we had A\y—1 = A\g = 2 (and g = pg—1 = 1), then v = (3,1) in
the beginning. Hence, with the described construction, ¥(v) decreases by 2 and X(\/u)
increases by at least 3. Thus A increases and we have A = y W v.

If \; = 1 at the start, then v could have been (4) at the start and with the construction,
Y (v) decreases by at most 6. But X(A\/u) in this case increases by more than 6 (at least
two A/u boxes are in row d — 2 or higher). Thus A increases and we obtain A = W v.

(d-4) If pe—y = 1, recall again that jy is the smallest j such that p; = 1. Now move p.
to the first row and move .1 to row jo. Move two A\/u boxes to rows d — 2 and d — 1,
respectively and move one A/u box to row jo+1 < d — 2.

(d-4.1) If v = (4) at the start, then the possible positions with smallest contents of the
A/p boxes (that are not the one at position (1,d)) are:

(1) (2,d—2),(3,d—3),(4,d —3) if pe—2 < 2. Then X(v) decreases by 8 and it is easy
to count that ¥(A/u) also increases by at least 8.

(2) (2,d—2),(3,d—2),(4,d —2) if pe_o > 3. In this case the described construction
does not work. Instead, still move f. to the first row, then move the A/ boxes
to rows d — 1 and d so that \y_; = Ay = 2 and finally, move one p box from row
d—3 to row d — 2. Then ¥(v) decreases by 6 (as v changes from (4) to (3,1)), but
Y(A/p) increases by at least 8.

In all the cases A either increases or does not decrease after the described procedure
and in the end we obtain A = p W v.

(d-4.2) If v = (3,1) at the start, then the possible positions with smallest contents of
the A/p boxes (that are not the one at position (1,d)) are

(1) (2,d—1),(2,d—2),(3—d—2) if ey > 3. Here again the described construction
does not work. Instead, still move p, to the first row, then move the A/u boxes
to rows d — 1 and d so that A\y_; = Ay = 2 and finally, move one p box from row
d — 3 to row d — 2. Then X(v) decreases by 2 (as v changes from (3,1) to (2,2)),
but X(A/u) increases by at least 5.

(2) (2,d—1),(2,d —2),(3,d — 3) if pe—o < 2. In this case we use the construction,
where v changes from (3,1) to (2,1, 1). The value of ¥(v) thus decreases by 4, but
it is easy to check that ¥(A/p) increases by at least 4. Hence A does not decrease.

Again, in all the above cases A either increases or does not decrease after the described
procedure and in the end we obtain A = p W v. Note that we cannot have v = (2,2) at
the start.

(d-4.3) If v = (2,1,1) at the start, then the possible positions with smallest contents
of the \/u boxes (that are not the one at position (1,d)) are (2,d), (2,d — 1),(2,d — 2).
Then v does not change during the described construction. Note that X(A/u) also does
not change, but we get A\ = p .

B.3.5. Case d =e. (a) If ug_1 > 4, then move p; to the first row and move all the A/
boxes to row d. This construction (is a series of Robin Hood moves and hence) clearly
increases A and produces A = p W v.

(b) If pg—1 = 3, let again j; be the smallest j such that p; = 3. Move 4 to the first
row, move three A/ boxes to row d and move the last A/u box to the end of row j;.
This is a series of Robin Hood moves (note that v changes into (4), which is of the lowest
possible height). Thus A increases. By exchanging Ay with p;,, we identify this triple of
partitions with a triple of partitions (A, i, v) such that A = p W v.
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(c) Assume pq—1 = 2. Note that in this case d > 3. Move p4 to the first row and unless
fa—2 > 4, move the \/u boxes to rows d — 1 and d, respectively, so that \j_; = \g = 2.
We have the following cases:

(1) v = (4) at the start. Since pg_o < 3, then the possible positions with smallest
contents of the A\/u boxes are (1,d), (2,d), (3,d—1), (4,d—2). Now X(v) decreases
by 6 (as v changes from (4) to (2,2)) and ¥(A\/u) increases by at least 4 as well.
So A does not decrease.

(2) v = (3,1) at start. Then the possible positions with smallest contents of the A/
boxes are (1,d), (2,d), (3,d), (3,d—1). Now X(v) decreases by 2 (as v changes from
(3,1) to (2,2)) and X(A/u) increases by at least 2 as well. So A does not decrease.

(3) v = (2,2) or v = (2,1,1) at the start. In this case we have at most three A\/u
boxes in row d, hence all moves in the described construction are Robin Hood
moves (the height of v clearly does not increase). Thus A increases.

In all three cases we obtain A = p W v.

If p1g_o > 4, then still move py to the first row and move one p box from row d — 2
to row d — 1. Now move the A/u boxes as in (b). The argument in (b) shows that this
construction increases A, while it produces a triple (A, p,v) with A = p W v.

(d) Assume py_1 = 1. Then clearly d > 3. Move iy to the first row.

(d-1) If pg—o > 2, then move pg_1 to the first row as well and move the A/u boxes to
rows d — 1 and d so that A\g_1 = A\g = 2. We separate the following cases:

(1) v = (4) at the start. Then the possible positions with smallest contents of the \/u
boxes are (2,d — 1), (3,d—1),(4,d—1),(5,d — 1). Now X(v) decreases by 6 (as v
changes from (4) to (2,2)) and it is easy to see that ¥(A/u) increases by at least
11. So A increases.

(2) v = (3,1) at the start. Then the possible positions with smallest contents of the
A/ p boxes are (2,d), (2,d—1),(3,d—1),(4,d —1). Now X(v) decreases by 2 (as v
changes from (3,1) to (2,2)) and ¥(A/u) increases by at least 6. So A increases.

(3) v=1(2,2) orv=(2,1,1) or v = (1,1,1,1) at the start. In this case we have at
most two A/ boxes in row d, hence all moves in the described construction are
Robin Hood moves (the height of v clearly does not increase). Thus A increases.

In all three cases we again obtain A = u W v.

(d-2) If pg—2 = 1, note that d > 4. Now move 4 to the first row.

If g3 > 2, do as in step (d-4) when d —e = 1.

If pg—3 = 1, move g1 and pg_o to the first row as well. Move three \/u boxes to rows
d—2,d—1,d, respectively, so that A\; = A\j_1 = Ag_2 = 1. Move the last A/ box to row
Jo- (Recall that jo is the smallest j such that pu; = 1.) We separate the following cases:

(1) v = (4) at the start. Then the possible positions with smallest contents of the A/u
boxes are (2,d — 3),(3,d — 3), (4,d — 3), (5,d — 3) (in this case jo = d — 3). Now
Y (v) decreases by 8 (as v changes from (4) to (2,1,1)) and it is easy to count that
Y(A/p) increases by more than 8. So A increases.

(2) v = (3,1) at the start. Then the possible positions with smallest contents of the
A/p boxes are (2,d — 3),(2,d —2),(3,d — 3),(4,d — 3) (again with jo, = d — 3).
Now X(v) decreases by 4 (as v changes from (3,1) to (2,1,1)) and it is easy to
count that ¥(A/p) increases by at least 11. So A increases.
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(3) v = (2,2) at the start. Then the possible positions with smallest contents of the
A/ boxes are (2,d—3),(2,d—2),(3,d—3),(3,d—2) (again with jo = d—3). Now
Y (v) decreases by 2 (as v changes from (2,2) to (2,1,1)) and X(A\/u) increases by
at least 9. So A increases.

(4) v=(2,1,1) or v = (1,1,1,1) at the start. In this case we have at most one A\/u
box in rows d and d — 1, hence all moves in the described construction are Robin
Hood moves (the height of v clearly does not increase). Thus A increases.

All three cases produce a triple of partitions (X, u,v) with A = p W v,
B.4. Small d. Lastly, we prove Proposition B.2 for d = 2, 3.

B.4.1. d =2. If d = 2, then given a triple (A, i, ), both y and v have at most 2 rows. Now
clearly, moving all \/u boxes to the second row and moving all p boxes to the first row
decreases (A /). Since the height of v decreases as well, the triple ((n—k, k), (n—k), (k))
maximizes A.

B.4.2. d = 3. (a) Assume first that d — e = 2. In this case move the A\/u boxes from the
first row to the second row (note that since 2k < n, this gives a valid partition). Doing
so v does not change (since it must have been py =n — k > Ay at the start) and S(\/p)
decreases, hence A increases and we are done.

(b) Assume d — e = 1. Let a1 = A\ — pg, a9 = Ay — pg,a3 = 3. We will call two
consecutive rows of A\/u disjoint if they do not share a column. Otherwise, we will say
that such two columns meet.

If a1, as, az are all disjoint, then joint their boxes into one row and insert the row above
or in between or below p1, o to make a valid partition. Doing so v and p do not change
(note that v = (k)) and 3()\) decreases. Indeed, another way of seeing this construction
is the following: move the A/u boxes down and left so that first all spots below ps are
filled, then (if possible) all spots to the right of us and below py and finally, leave the
(potentially) remaining boxes in the first row. Doing so, ¥(A/u) decreases and v does
not change, so A increases. If & < ps, all boxes are in row three and we are done. If
pe < k < pi, then exchange A3 with us to identify the correct triple (A, u, v) with a triple
such that p and A/u do not share rows. Similarly, if & > py, first exchange A3 with ps
and then Ay with p.

If any of aj, as, ag meet (not that they could all share a column), then move the boxes
of a3 that share rows with as to the first row and do the same with the boxes of ay that
share rows with a;. Doing so, 3(\/u) increases, but ¥(v) increases even more. In fact,
the height of v decreases by at least one, and it is easy to see that the path that each box
travels in A/ is shorter (in the horizontal direction) than the path it travels in v. So this
construction increases A and brings us to the case where a1, as, ag are all disjoint, which
we have dealt with already.

(c) Lastly, assume d = e. If ay,as, a3 are disjoint, then join their boxes into one row
and insert the row above or in between or below p; 4+ 3 and o to make a valid partition.
The same argument from above shows that this construction increases A.

If any of ay,as,as meet, then move the boxes of as that share rows with as to the
first row and do the same with the boxes of as that share rows with a;. Now repeat the
procedure from above, where a, as, ag were disjoint.
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APPENDIX C. SWAP MATRICES ON (C3)®" AND (C*)®"

Here we give some results specific to the cases d = 3 and d = 4.

C.1. Linear space spanned by the products of at most two swap matrices. We
prove that in M>%3(C), there are no relations of order two other than (4.1).

Proposition C.1. The set By consisting of
1
Swap;; <]
Swap;;Swap;, 1 <j <k
Swap,;Swap;, ©<j <k
Swap,;Swapy, @ <j, 1 <k <l

is a basis of the subspace of M (C) of polynomials in the Swap;; of degree at most two.

Proof. To prove the linear independence of By suppose

al + by Swap;+ Y ey SwapgSwap;, + Y diji Swap;Swap,+

1<j i<j<k 1<j<k
(C.1)
E €ijki Swap;;Swapy, = 0.
i<j
i<k<l

for some scalars a, b;j, ¢ijk, dijk, €ijki-
To prove that the e;;,; must all be zero, first consider the vector

U:€1®€2®€3®€1®61"'®€1€ ((Cd)®n.

Evaluate (C.1) on v to see that the term Swap;sSwaps4 is the only one that yields
e ®e; ®e; ®ez®ep - ®ep. Hence, ej934 must be zero and by analogy, all of the ey
must be zero as well.

A similar argument allows us to get rid of the ¢;;; and the d;;;. Indeed, after evaluating
(Clyonv =e Qe @e3®e; @ep--- @ e, the term Swap; o Swaps 3 is the only one
that gives e3 ® e; ® ea ® €1 ® €1+ -+ ® e; and Swapy o Swap; 3 is the only one that gives
eoR®e3Re Ve Rer - R ey.

Finally, we are left with a linear combination of single swap matrices and the identity,
which are clearly linearly independent. [

C.2. Gell-Mann matrices of size 3 x 3. Recall the definition of the Gell-Mann matrices
from Subsection 1.5.1. For d = 3, there are eight Gell-Mann matrices, namely

010 0 —i 0 1 0 O 001
AM=(100] =i 0 0] A3=[0 —1 0] \q=1(0 0 0
000 0 0 0 0 0 0 100
00 —1i 000 00 O 1 10 0
AM=(00 0] X=[00 1] X=100 —i] s=—71(0 1 0
i 0 0 (0 10 0 i 0 V3 00 -2
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They are self-adjoint, have trace zero and together with the identity Ay := I, they form a
basis for M3(C). They satisfy

8
2 a,b,c s rab,c
(C.2) Aoy = 3 dap I + ;:1 (d¥7C +1f¥7) A,

where 9, is the Kronecker delta and the febe and d*P¢ are structure constants with
1 1
fobe = —Z—litr()\a[)\b, Ae]) and d*"c = 1 tr( A { s, A }).

Here [A,B] = AB — BA and {A,B} = AB + BA denote the commutator and the
anticommutator respectively. Note that the f**¢ are antisymmetric and the d**¢ are
symmetric under the interchange of any pair of indices. The nonzero f®*¢ are

FL23 1 fLAT _ fLES _ 246 _ g257 _ §345 _ ¢376 _ %’ FL58 — §6T8 _

Y

V3
2
while the nonzero d*"¢ are

JLA6 — gLBT 256 _ 344 _ 355 _ 1 24T — 366 — BT — _

Y

1 1
JUL8 — 228 _ 338 — = 88 _ __
V3’ V3
A48 — 558 _ 668 — 178 — _ 1

2V/3
Fix n € N. As in Section 1.5, denote
M=1® @I\ I® @I € Ms:(C)
i—1
e
for a € {0,...,8}. Then,
(C.3) (A2 A Ja;€40,...,8}, j=1,...,n}

ai” a2

is a basis of M3»(C), and A}, and )\ZL], commute for ¢ # j. By Proposition 1.11, each qutrit
swap matrix can be written as a linear combination of the Gell-Mann matrices as follows:

8
LIy
(C4) SW&pU == §I + 5 £ )\LL}\.(]Z

C.3. Linear subspace of M3.(C) spanned by the products of at most three
swap matrices. Throughout, any two tuples (7,7) and (k,[) are compared w.r.t. the
lex ordering.

Proposition C.2. The set Bs consisting of By and the three types of cubics

(C.5) Swap;;Swapy,Swap,, 1 <j, k<Il, p<gq, (1,7) < (k1) < (p,q);
Swap,;Swap,; Swap,, i <j <k, p<q, p,q¢{i,j,k},

(C6) Swap;SwapySwap,,, @ <j <k, p<gq, p,q & {i,Jj,k};

) Swap,;Swap ;. Swapy,, Swap,;;Swap;Swapy;, Swap,,Swap,,Swap,;,

Swap,,Swapy,Swap,;, Swap;Swap;Swap;, 1< j <k <I;
is a basis of the subspace of M3 (C) of polynomials in the Swap;; of degree at most three.
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Remark C.3. As it can be seen from the proof, any of the cubics in (C.7) can be replaced
by Swap;; Swapg Swap .

Proof. For the spanning property of Bs, first note that by Proposition C.1, every product
of three swap matrices involving at least five indices is in the linear span of B3 and by
(3.4), every product of three swap matrices involving four indices is in the linear span
of B3 as well. This is because a product of three swap matrices involving five (resp. six)
indices corresponds to a product of a 3-cycle and a disjoint transposition (resp. a product
of three disjoint transpositions; these are in the span of By). Similarly, a product of three
swap matrices involving four indices corresponds to either a 4-cycle or a product of two
disjoint transpositions (the latter being in the span of B,). Moreover, any product of
three swap matrices involving three indices or less clearly corresponds to an element in B
(either to a 3-cycle, a transposition or to the identity). This proves the spanning property
of Bg.

The proof of the linear independence of B3 relies heavily on the properties of the Gell-
Mann matrices presented in Subsection C.2. Suppose there is a linear dependence among
the elements of Bs. Then, using (C.4), express each of the appearing terms w.r.t. the
basis (C.3) consisting of different combinations of tensor products of the eight Gell-Mann
matrices.

First, consider the elements in (C.5) and observe that for any choice of i < j, k < 1,p < ¢
with (i, j) < (k,1) < (p, q), the highest order terms in the expansion of Swap;;SwapgSwap,,
are of the form

MNXNNEN NN abce{l,...,8}.
Likewise, considering the elements in (C.6), for any choice of i < j < k,p < ¢ with
p,q ¢ {i,7,k}, the highest order terms in the expansion of Swap,;Swap,,Swap,, are of the
form

NMMMNNN qbece{l,...,8),
while for Swap;;Swap,;Swap,, they are of the form

MNMNAFNPNT = N XN AENP NG g b,ce{1,...,8}.

As for the elements in (C.7), for any choice of i < j < k < [, the highest order terms
e.g. in the expansion of Swap,;Swap;,Swapy; are of the form

NMMMMNN e bece{l,....8)

and similarly for the other four cases in (C.7).

We now gradually eliminate the terms in the linear dependence equation: (a) By the
product formula (C.2), the elements in (C.5) are the only ones that have terms of order
six and more precisely, for any choice of i < j, k < I,p < ¢ with (4, 7) < (k,1) < (p, q), the
element Swap;;Swapy;Swap,, has the term X! )\{ AL NE N which does not appear in the
expansion of any other element of Bs. Hence, the coefficients next to each of the elements
in (C.5) have to be zero.

(b) Now the elements in (C.6) are the only ones that have terms of order five. By

)\1)\3 = if1’3’2 )\2 = —if1’2’3 )\2 = —i )\2,
Modg = if23IN = ifP23 )\ =i\,
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1
)\1>\6 = d1’6’4)\4 = d1’4’6)\4 = 5)\4

Hence, for any choice of i < j < k,p < ¢ withp, ¢ € {1, j, k}, the element Swap,;Swap;rSwap,,
has in its expansion

NN AE A XL 1 XEN M AE NE AL = i A5 M AE NE S+ 5/\1 M ENE AL,
But Swap;;Swap;,Swap,, has in its expansion

NN AEAEDZAL £ XM AN AE ML = —i AL A AE DD AT+ SN N AEAE AL
Since the quotient of any two coefficients next to the same basis element in the expansion
of Swap;jSwap;rSwap,, and Swap;;Swap;,Swap,, must be the same, the above implies
that the coefficient next to each of the elements in (C.6) has to be zero.

(c) So the elements in (C.7) are now the only ones in the linear dependence equation
that have terms of order four and for any choice of ¢ < j <k <, only the five products
listed in (C.7) have basis elements of the form A A A*AL. Denote the coefficients in the
linear dependence equation before the products in (C.7) by aq, ag, ..., as respectively.

We now consider the equations that we get by reading off the coefficients next to the

basis elements A\ X A\, for several choices of a, b, ¢, d with a, b, ¢, d being all different num-
bers. First one can compute the following part of the expansion of Swap,;Swap;,Swapy,,

Ly Ly Ly I
-5 AN ARAL 4 3 AN AENE 4 3 AAAENL — 3 ASNINRAL
Note that by permuting i, j, k, [, we can obtain four terms in the expansion of the other
four elements in (C.7). E.g., by interchanging k and I, we see that Swap,;Swap,;Swapy,
has in its expansion the four terms
1

2
Using this, one can easily obtain the following equations by comparing the coefficients

i\ 1 i\J 1 i\J 1 i\J
NN AR 4 3 MM APAL 4 3 AMAAL — 3 NNIARNL.

next to several terms of the form A A AN -

NN —ap+ag+ag =0
NN —ay+ag+as=0
MNXNAL Y ay —ag+as+a5=0
NN —ay+as+a,=0
NXNAL 0 —ag 4 a5 =0
AiA{x\’éAé : —agtaztag—as;=0
MMM —a) 4 a3 —ay = 0.
The above system of equations has a unique solution oy = ay = -- - = a5 = 0. This proves

that for any choice of i < 7 < k < [, the coefficients in the linear dependence equation
before the elements in (C.7) are zero.

(d) We are left with a linear dependence involving terms of degree at most two, which
contradicts linear independence of B,y as shown in Proposition C.1. [
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C.4. Linear subspace of Mj3.(C) spanned by the products of at most four swap
matrices. Recall from the previous subsection that we compare tuples (i,7) and (k,1)
w.r.t. the lex ordering.

Proposition C.4. The set B, consisting of By and the following quartics
Swap,;Swapy, Swap,,Swap,; 1 <Jj, k<[, p<gq, r<s,

o (.3) < (k1) < (p.0) < (. 5)
() :WapijSWapijWappqSWapm 1< g <Kk, p < q,m < s, |
wap;;Swapy Swap,,Swap,,  p,¢, 7,8 & {i,j,k}, (p,q) < (r,s);
Swap,;Swap ;. Swapy, Swap,,,, Swap,;Swap,;Swap,;Swap,,,,
(C.10) Swap,,Swap . Swap;Swap,,,, Swap;,Swap,Swap;Swap,,,,
Swap; Swap,;;Swap;Swap,, 1 <j<k<Il, p<q, p,q & {i,j,k,1};
Swap,;Swap ;. Swap,,,Swap,,., Swap,;Swap;,Swap,,,Swap,,,
(C.11) Swap,;Swap;,Swap,,Swap,,., i <j<k, p<qg<r, i<p,
{i,5,k} 0 {p,q.r} =0
SwapijSwapikSWapleWapjm, SwapiijapikSWapleWapkm,
SwapijSwapikSwapleWapkm, SwapijSWapilSWapijWapjm,
Swap,;Swap;,,, Swap . Swap,;, Swap,;Swap; Swap,,,,Swap;,
(C.12) Swap,;Swap;,Swap,,,Swap,;, Swap,;Swap,, Swap,,,,Swapy,,

SwapijSWapikSWapilSWapim, Swapl-jSwapikSWapilSWaplm,
Swap; ; Swap,,Swap,;Swapy,,,,, Swap; ; Swap,,Swap,;Swap i
1<) <k<l<m,

is a basis of the subspace of M2 (C) of polynomials of degree at most four in the Swap;;.

Proof. The spanning property of By follows after identifying the products of swap matrices
with permutations in S,, using the degree-reducing relation (1.5) with d = 3. Indeed,
considering the elements which correspond to the product of a 4-cycle and a disjoint
transposition, the type Swap;Swap,,Swap . Swap,, missing in (C.10) is clearly in the
span of B by (1.5). As for the elements that correspond to 5-cycles, there are 12 of the
total 24 5-cycles on the letters 4, j, k, [, m missing in (C.12). Their expansions in terms of
the elements of By are given in Subsection C.4.1.

Now suppose there is a linear dependence between the elements of B, and express the
appearing terms w.r.t. the basis (C.3) using the formula (C.4). We gradually eliminate
terms from this relation starting with the ones with highest order terms.

(a) Consider the elements in (C.8). For any choice of indices i < j,k < l,p <
q,r < s with (4,7) < (k, 1) < (p,q) < (r,s), the highest order terms in the expansion
of Swap,;SwapySwap,,Swap,s are of the form

NN NEAL MNP XIS NS abe,d e {1,...,8).

The product formula (C.2) implies that the elements in (C.8) are the only ones in B,
with such terms and more precisely, for any choice of i < j,k < I,p < ¢,r < s with
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(i,7) < (k1) < (p,q) < (r,s), the element Swap;;SwapySwap,,Swap,s has the term
AL AE AL AP AINT A8, which does not appear in the expansion of any other element of B.
Hence, by analogy, the coefficients next to each of the elements in (C.8) are zero.

(b) Now the elements in (C.9) are the only ones with highest order terms of degree 7,
meaning, involving 7 distinct indices. Using part (b) of the proof of Proposition C.2, for
any choice of i < j < k,p < ¢, < s with p,q,r,s ¢ {i,7,k}, (p,q) < (r,s), the element
Swap;jSwap,rSwap,,Swap,s has in its expansion

Ny, NL A NE AL NGNS + AL M NS AEAEAIAG NS = i A5 M AE A AE AT AS + R N AEAE MG NS
But Swap;;Swap;,Swap,, has in its expansion
AL A AEAE AL NG ASHAL N NG AE AEAE AT NS = —i AL M A AE AL NG Aj+5A A ARAEAL NGNS

By the same argument as in part (b) of the proof of Proposition C.2, all the coefficients
next to the elements in (C.9) are zero.

(¢) The elements in (C.10) and (C.11) are now the only ones with with highest order
terms of degree 6. We first consider those in (C.11). For fixed i < j < k,p<qg<r,i<p
with {4, 7, k} N {p,q,r} = 0, denote the coefficients next to the elements

Swap,;Swap ;. Swap,,,Swap,,., Swap, ; Swap;, Swap,,, Swap,,., Swap;;Swap;, Swap,,,Swap,,,.

by B1, 52 and [3 respectively. Clearly, these are the only elements in (C.11) whose high-
est order terms involve precisely the positions i, j, k, p, ¢, r. So comparing the coefficients
next to the basis elements A5 A AE AP A AL XS XL AR AT NS AL and X A, AEAD AZ L give the
following equations

o 1 1 1
MMM =i — iy +i=f5=0

4 4 4
iyizeyw gy . _alg i lao i1
Ay A5 Ag AT AL AT —1151 + 1152 + 1153 =0
NN — Y25+ 5 Y35 g,

The above system has a unique solution 5; = 5 = 3 = 0. Note that each of the highest
order terms of the elements in (C.10) necessarily has one of the Gell-Mann matrices A re-
peated twice. So the coefficients next to the basis elements A3 M, A AP AE A2 A5 M AE NP A9 Az
and X X, A5 AP M \% in the expansion of the elements in (C.10) are zero. Similarly, each
of the highest order terms of the elements corresponding to products of three disjoint
transpositions has (at most) three distinct Gell-Mann matrices, each repeated twice.
Hence, the coefficients next to the basis elements X5 M, AE AP AZAZ XO XL AE NP AL AE and
VP AL ML in the expansions of those elements are zero as well. We conclude that
the coefficients next to the elements

Swap,;Swap ;. Swap,,,Swap,,., Swap;;Swap,, Swap,,,Swap,,., Swap,;Swap,,Swap,,,Swap,,.,

are zero and by analogy, the coefficients next to all the elements in (C.11) are zero.
Having eliminated the elements in (C.11), the fact that the coefficients next to the
elements in (C.10) are zero easily follows from part (c) of the proof of Proposition C.2.
(d) Now the elements in (C.12) are the only ones in B; with highest order terms of
degree 5. For fixed 1 < j < k < [ < m denote the coefficients next to the quartics in
(C.12) by 71,...,72 respectively and note that these are the only elements in (C.12)
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whose highest order terms involve precisely the positions ¢, j, k, [, m. Similar to before, we
now compare the coefficients next to several basis elements of the form M\’ )\i AEXEA™ to
get a system of equations. We only consider coefficients next to elements ! )\g PUPUDL
with a, b, ¢, d, e all distinct to ensure that none of them appears in the expansions of the
elements (C.6) corresponding to a product of a 3-cycle and disjoint transposition. From
the system

NN XN 29 — 95 — %6 + 97 + 78 + Y9 — 2710 — Y12 = 0,

NN NN v — 9 =+ 97 — Y10 + 711 — Y12 = 0,
)\ZA{)\';)\QA?L: —2m =% =%t ++ % — 2710+ 712 =0,
NN AEXNNT D =y 49+ + 7 — 75 — Y6 — 2711 + 2712 = 0,
NMMMAT . m+7—7+7— %+ 7% — 297 + 27 =0,
NN i+ — Y+ 29 + 77 — 299 + 710 + 711 + 112 = 0,
AAMENND .~y ety —qa+ 75 + % — 2711 + 2712 = 0,
NN AT . =29+ 293 — 29+ 95 — Y6 + 7 — Vs — Yo + Y12 = 0,
MNMMNAT D n+v—1— 7+ =% — 27 +2% =0,

we deduce 76 = 0. Adding the equations
NMMAT . M+ +u+7+ 2% — Y0 — 711 — N2 = 0,
)\i)\g)\g)\é)\?: 27 +2u+ 2%+t —18— Y —Y12=0,
MMM =27+ 93— 2%+ 297 — 98 — Y10 + 711 =0

yields 9 = 0. Moreover, from
MMMy — vy — Y+ 295 — 7 + 710 + 111 — M2 = 0,
we obtain y; = 717 = 0. Finally,
NAAEMAT =472 =7 — 2% + 710 — Y12 =0
A M NENAT . —yg g+ 710 — Y11 = 0
vields i =y =7 =% =% =7 =70 =712 =0.

(e) What remains is a linear dependence involving terms of degree at most three, which
contradicts Proposition C.2. [

C.4.1. Ezpansions of the remaining 5-cycles. To complete the proof of Proposition C.4
we list the expansions of the 5-cycles not contained in the basis. These were produced
with the help of noncommutative Grobner bases, but can be readily verified by direct
matrix calculation.

Swap,;Swap;,Swap;33wap,, = %Swap12SWap15SWap23SWap24
+ 1 Swap,Swapy Swap,sSwapy; + 3 Swap;,Swap,3Swapg,Swapg;
+ Swap,,Swap,3Swapy, Swapss + % Swap;5SWap; 3 SWapy, SWapys

+ % SWap;9SWap3SWap,sSwapy, + % SWap;9SWap;33Wap;,SWapss
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- % SwapysSwapg,Swapss — % SwapysSwapy;Swaps, — % SWaP,3SWaPyySWap,s
— Swap,gSwapySwapss — % SWapy3SWapy,SWapys + % Swap,55WapyzSwaps,
+ 1 SwapySwap,sSwap,; — 3 Swap,Swap,sSwaps; — 3 Swap;,Swapy;Swap,;

% Swap3Swapy;Swaps, — % Swap,35WapyySWap,s;

— Swap,3Swapg,Swapgs —
- %Swap13SWap24SWap35 - %Swaplg,SWapMSwap% - % Swap,3Swap,55wapsy

- % SwapsSwap;5Swap,, — % SwapzSwapySwap,; — % Swap,3Swap,4Swaps;

— 3 Swap,sSwap,,Swapy; — 5 Swap;sSwap,,Swap,; + 5 Swap,,Swapg,Swap,;

+ % Swap;9SWapysSWaps, — % SwWap;9SWapy,Swapss — % Swap;53Wapsy, SWapys

+ 5 Swap,,Swap,sSwap,; — 3 Swap;,Swap,sSwapy; — 3 Swap;,SwapysSwap,,

— Swap,Swap;sSwap,, — % Swap,Swap;5Swap,; — % Swap,SwapysSwap,s;

- %SwapmSwapMSwap% - %SW&IJlQSW&pMSW&}D% - % Swap,Swap;sSwap,;

- %SwaplgswapMSWapw — Swap,Swap,3Swapgs — % SwapySwap;3Swapsy

— 3 Swap,,Swap,3Swapy; — Swap;,Swap,;Swap,, — 5 Swap;,Swap;Swap,;

— 3 SwapSwap;3Swapy, + 5 Swaps,Swap,; + Swaps,Swaps; + 5 Swapy;Swaps,
+ Swap,,Swap,s + Swapy,Swapss + SWapy,SWap,s + SwapysSwapss

+ 1 Swap,3Swapy, + Swapy;Swapy; + Swap,gSwap,y, + 3 Swap,sSwap,,

+ 1 Swap,Swap,; + Swap,Swapg; + Swapy,Swap,s + 3 Swap;,Swapy;

+ Swap,,Swap,; + 3 Swap,sSwap,; + Swap,sSwaps; + Swap,sSwapay

+ Swap;35wapys + Swap,3Swapsy, + Swap,33wap;; + Swap;sSwap, 4

+ 3 Swap,Swapss + 3 Swap;,Swapy; + Swap;,Swap,, + 3 Swap;,Swap,,

-+ Swap,Swap,5 + Swap,Swap,, + Swap;,Swap;3 — Swap,; — % Swapss — Swaps,

— gSWap25 — % Swapy, — Swapys — Swaps — % Swap, — %SwapB — Swap;y + 2

Swap,,Swap, s Swap3Swap,, = %SwaplgswaprWapQ?,Swap%

+ % SWap;9SWap;,SWapysSWapys — % SWap;9SWap;3SWaps, SWapss

— Swap;,SWap,3SwWapy, Swaps; — % Swap 5 Swap, 3Swapy, Swapys

+ Swap,,Swap,3SwapsSwaps, + 3 Swap;,Swap;sSwap,;Swap,,

+ Swap,,Swap,sSwap, ,Swap,; + % Swap;,9Wap;3Swap,,Swapss

+ Swap;,Swap,3Swap, ,Swapys; + Swap,,Swap;sSwap; ,Swap; s

+ 3 Swap,gSwaps,Swaps; — 3 Swap,Swap,;Swaps, — 3 Swap,sSwapy,Swap,s
- % Swap,gSwap, Swap,; — % Swap,5SWapy3SWaps, — SWap;;SWapysSwap,,
— % Swapy,Swap,sSwapy; + 3 Swap,,SwapysSwapg; — & Swap,;SwapysSwap,;
+ Swap,sSwaps,Swapgs + & Swap,3Swapy;Swapg, + 3 Swap;sSwap,,Swap,s
+ 2 Swap,3Swap,,Swapss + 3 Swap;sSwapy,Swapy; — 1 SwapsSwap,;Swapg,
- % Swap,3SWap55Wapy, — % Swap,3Swap,4Swap,s — % Swap,3Swap, 4 SWapgs

— %SwaplBSwapMSWap% — %vaapBSWaupMSwap15 — % Swap;,SWaps,Swap s
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- % Swap,,Swapy;Swaps, + % Swap,SwapyySwaps; + % SWap ySWapy,SWapas
+ 2 Swap,Swap,gSwap,s — 3 Swap;,Swap,sSwapy; — 3 Swap;,Swapy;Swap,,
— Swap,SwapsSwapsy — % Swap,,SWap,55Wapgs — % SwapySwap,4SWapys
- %SwapHSwapMSWapgg, - %SwaanWapMSwap% - % Swap,Swap, 4 Swap,s
- % Swap,SwapySwap,; — % Swap,Swap,zSwaps, — % Swap,Swap,3Swap,;
— 3 Swap,,Swap,;Swap,; — 2 Swap,,Swap;;Swap, + 1 Swapg,Swap,s

+ 3 Swapy;Swaps, + 3 SWap,gSwaps, + SwapysSwapy; + Swap,sSwap,,

+ Swap,5Swapsy + 5 Swap;5Swap,, + Swap;;Swapys + 3 Swap,,Swap,s

+ 5 Swapy,Swap,s — 5 Swap,gSwap,; + Swap,sSwap,; + Swap;sSwap,,

+ 3 Swapy,Swapss + Swap;,Swaps, + 3 Swap;,Swap,; + 3 Swap;,Swap,,

+ Swap,,Swap;; + Swap;,Swap,, + Swap,,Swap,3 — 1 Swaps; — Swapg, — 5 Swap,s

— %vaap24 — Swapyg — Swap;; — %SwapM — % Swap;;3 — Swap;, + 1

Swap s Swap,3Swap, ;Swap,, = _% Swap,,5SWap 5 Swapy;Swapy,

+ 1 Swap,Swap,Swap,sSwapy; + Swap;,Swap,Swap, s Swapy,

+ % SWap;9SWap39Waps, SWapss — SWap,,SwWap,35Wapy, SWapss

+ % SWap,,SWap,35Wapy, SWapys + Swap,,Swap,3Swap,5Swaps,

+ % Swap,,Swap,3Swap,5Swapy, + Swap;,Swap;3Swap; ;Swap,s

— % Swap,,Swap;3Swap,,Swapss + Swap;,Swap,3Swap, ,Swap 5

- % SwapysSwapg,Swaps; — % SwapysSwap,ysSwaps, — % Swap,3SwWapyySwap,s;
+ Swapys Swap,,Swapg; — 5 SwapysSwapy,Swap,; — 3 Swap,;Swap,gSwaps,
— 3 Swap,Swap,sSwapy; + 3 Swap,,SwapysSwapg; — 5 Swap,;SwapysSwap,;
— Swap;,Swap,5Swapy; + % Swap,3SwWapysSwaps, + % Swap;3SwWapy,Swapys
+ 3 Swap,3Swap,,Swapss — 3 Swap,sSwap,,Swapy; — 3 Swap;sSwap,;Swapa,
- % Swap,3SWap;55Wapy, — % Swap,3Swap;4Swap,s + % Swap,3Swap,4Swapss
+ 1 Swap,sSwap,Swap,; — 3 SwapsSwap;,Swap,; — 3 Swap;,Swaps,Swap,s
+ % Swap;9SWapysSWaps, + % Swap;9SWaps,SWapss — % SwWap;,S9Wapy, Swapys
— % Swap;9SWapys SWap ;5 — % Swap;9SWapys SWapys + % Swap;5SWapPys SWaPay
- %SwapuSWaprWapQg - %SwapmvaapMSWap% - % Swap,Swapy s Swaps;
- % Swap,Swapy sSwap,; — % Swap,Swap,sSwapys — % Swap,SwapysSwap,;
— Swap,SwapzSwap,; — % Swap,Swap;zSwaps, — % Swap,Swap,zSwap,;
— 2 Swap,,Swap,sSwap,; — 3 Swap;,Swap,sSwap,, + 5 Swaps,Swap,s

— 3 Swap,;Swaps, + Swapy,Swap,; + Swap,sSwap,s + 3 Swap,sSwaps,

+ SwapysSwapys + 5 Swap,5Swap,, + Swap;sSwapys + 3 Swap;,Swap,s

+ % Swap;,SWapys + Swap;,Swap;; + % Swap;39wap,; + Swap;3Swap;;

+ Swap;,Swapy; + 1 Swap,,Swapgs + 5 Swap;,Swap,; 4+ 3 Swap;,Swap,,
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+ Swap,Swap,5 + Swap,Swap, + Swap,Swap;; — Swap,s — % Swapss

— %Swap25 — % Swapg, — SWapys — SWap;; — % Swap;, — %Swaplg — Swap;, + 1

SwapgSwap, s Swap, ;Swap,, = _% Swap,SWap, s SWapyz Swapy,

- % Swap,Swap, ; SWapy3 SWapy; — SWap;pSwap,Swap,;Swapy;

— % Swap;5SWap;35Waps,Swapss + % SWap;9SWap;33Wapy, SWapys

— Swap;,Swap,3SwapsSwaps, — % Swap,Swap, 3Swap, 5 Swap,,

+ 5 Swapy,Swap,sSwap, ,Swapss + Swap,Swap;sSwap, ;Swapos

+ 3 Swap,gSwaps,Swapss + 5 Swap,sSwapy; Swaps + 5 SwapysSwapy,Swap,;
— % SWapy3SWapy, Swapss + % Swap,55WapysSwaps, — % Swap, 4 SWapysSwap,s;
- %SwapMSwapQgSWap% - % Swap,4Swapy3Swap,; — % Swap,3SWapys; SWapsy
+ % Swap,3SwapyySwap,; + % Swap,3Swap,,Swapss + % Swap;3SWapy,Swapas,
+ 3 Swap;3Swap,sSwaps, + 5 SwapyzSwap;Swapy, + 3 Swap;zSwapy,Swap,;
- % Swap,3Swap;4SwWapss — % Swap,3Swap;4Swapys + % Swap,zSwap,4Swap;;
+ 1 Swap,Swapg,Swap,; — 3 Swap;,Swap,sSwaps, + 3 Swap;,Swapy,Swapss
— % Swap;5SWapy, SWapys + % Swap,,SwapysSwap,; + 3 Swap,Swap,sSwap,;
+ % Swap,,SwapysSwap,, + 3 Swap,,Swap;sSwap,; — 5 Swap;,Swap;,Swap,s
+ 3 Swap,Swap,Swaps; — 5 Swap;,Swap,,Swapys + 5 Swap;,Swap, ;Swap,s
+ % Swap;,Swap,Swap,; + % Swap;,Swap;sSwaps, — % Swap;53Wap;3SWapys
+ % Swap;,SWwap;3Swap; — % Swap;,Swap;3Swap,, — % Swaps,Swap

+ % SWapysSWaps, — SWapy,SWapss — % SwapysSwaps, — % Swap,Swapay,

+ 3 SwapySwap,; + Swap,,Swapy; + 5 Swap,,Swapy; — 5 Swap;sSwap,;

— Swap;3Swapy, — Swap,35wap;; — % Swap,,Swapss + % Swap,SWapss

— T Swap,,Swapys + 3 Swapss — 3 Swap,; + 3 Swap,, — 3 Swapy, + 3 Swapys

Swap,,Swap,3Swap,5Swap,, = %SwaplQSwap15SWap23SWap24

— % SWap;9SWap; 4, SWapPy; SWapys + SWap,,SWap, SWap,5Swapys

+ % SWap;9SWap3SWaps, Swapss — % SWap;9SWap;3SWapy, SWapys

- % Swap,SWap3Swap;sSwap,, — Swap;,SwapsSwap;,Swap,;

- % Swap,Swap,3Swap, ;Swapg; — Swap;ySwap;3Swap,,Swapys

— 5 Swap,gSwaps,Swapss + 3 Swap,sSwapy; Swapsy + 5 SwapysSwapy,Swap,;
+ 5 Swap,gSwap,,Swapy; — 3 Swap;;SwapysSwaps + 5 Swap,;SwapysSwap,;
+ 3 Swap,Swap,gSwapss + 2 Swap,,Swap,sSwapy; + 5 SwapsSwapy; Swaps,
- %Swap13SWap24SWap45 - %Swap13SWap24SWap35 - % Swap,3SWapy,SWap,;
+ % Swap3Swap,;Swaps, — % SwapsSwap,5Swap,, + % Swap,3Swap;4Swap,s

+ £ Swap,3Swapy,Swapss + 3 Swap,sSwap,,Swapy; — 3 Swap;sSwap,,Swap;
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+ % Swapi,Swapg,Swap,; + % Swap,Swap,;Swaps, + % Swap;ySWapy,Swapss,
+ % SWap ySWapy,SWapy; — % Swap;,SWapysSwap,; + % Swap;ySWapyzSwWapas,
- % Swap ySWapy3SwWapy, — % Swap,,SWap;55Wapys + % Swap,ySwap,4SWapys
+ % Swap;,Swap;,Swapss + % Swap;,Swap; ,Swapys — % Swap;9SWap;,SWapgs
— % Swap;,Swap;,Swap; — % Swap;,Swap;3Swaps, + % Swap;55Wap; 3 SWapys
+ % Swap,,Swap,sSwap, 5 + 3 Swap,,Swap,sSwap,, — 5 Swaps,Swap,;

— % SwapsysSwaps, + % SWapysSWaps, — SWapysSWapys + % Swap;5Swaps,

- %SW&p14SW3P45 — Swap,,Swapg; — Swap;,Swapy; — % Swap;,Swapy,

+ 5 SwapgSwap,; + Swap,3Swapy, — 3 Swap;,Swapg; — 3 Swap;,Swap,;

+ 3 Swap,,Swapys + 3 Swapss + 3 Swap,; — 3 SWap,, + 3 Swapy, — 3 Swapy;

Swap zSwap,,Swap,5Swap,, = _% Swap,,SWap,;SWapy;Swapy,
- % Swap ,Swap, ; SWapy3 SWapy; — SWap;pSwap;,Swap,sSwapy;
- % Swap,Swap,3Swaps, SwWapgs + Swap,Swap,3Swapy, Swapss
- % Swap ,Swap,3Swapy, SWapy; — SWappSwap,zSwap, s Swaps,
- % Swap,SWap3SWap;sSwap,, — Swap;,SwapsSwap;,Swap,;
- % Swap ,Swap,3Swap, ;Swapgs — Swap;pSwap;3Swap,,Swapss
— 2 Swap,,Swap,sSwap,,Swap, 5 + 3 Swap,sSwaps, Swapas

3 Swap,gSwap,; Swaps, + 5 Swap,sSwapy,Swap,s + 3 SwapysSwapy,Swap,;

3 Swap,;Swap,sSwaps, + Swap,; Swap,gSwap,, + 3 Swap;,SwapysSwap,s

+
+
— 3 Swap,Swap,sSwapss + 5 Swap,,SwapysSwap,y; + Swap,,Swap, ;s Swapos
- % Swapy3SwapysSwaps, — % Swap3SwapyySwap,; — % Swap,3Swapy,Swapss
+ % Swap,3Swap,,Swap,s + % Swap,gSwap,;Swapg, + % Swap3Swap 5 5wapy,
+ 3 Swap;3Swapy, Swap,; + 5 SwapysSwap,Swapss + 5 Swap;zSwap,Swapss
+ 3 Swap3Swapy,Swapy; + 5 Swapy,Swaps, Swap s + Swap;ySwaps,Swapss
+ % Swap ySWapy; SWaps, — % Swap;,SWapy,Swaps; + % SWap ySWapy,SWapas;
+ % Swap,,SwapysSwap,s + % Swap;5SWapys SWapsys + % SWap;,9Wapy; SWaps,
+ Swap;,Swap;Swapg, + & Swap,,Swap,;Swap,; + 3 Swap;,Swap,Swap,s
+ 1 Swap,Swap,Swaps; + 3 Swap;,Swap,Swapy; + & Swap;,Swap, ;Swap,;
+ 3 Swap,SwapySwap, 5 + Swap;,Swap,;Swap,; + 3 Swap;,Swap,sSwaps,
+ 5 Swapy,Swap,sSwapy; + 2 Swap,,Swap,sSwap,; + 3 Swap,,Swap sSwap,,
- % Swapg,Swap,; — Swapg,Swapgs — % Swap,;Swaps, — Swapy,Swapys

— SwapyzSwap,; — % SWap,sSwaps, — SWapyzSwapy; — Swap,ysSwapy,

— Swap,5Swapg, — % Swap;Swapyy — Swap;sSwap,g — % Swap,Swap,;

- % Swap,4SWapyz — Swap,Swap ;s — % Swap3Swapy; — Swap;gSwap,;

— Swap3Swap;y — Swap;pSwap,; — % Swap,Swapgs — Swap;,Swapg,
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- %SW&plQSWap% - %SwaprWap% — Swap;,Swap;5 — Swap;Swap,
— Swap,Swap, 3 + Swapy; + 3 Swapg; + Swaps, + 1 Swapy; + 1 Swapy,
+ Swapys + Swap,; + % Swap;, + % Swap;s + Swap;, — 1

SwapsSwap;,Swap,Swap;3 = —Swap,Swap;3Swapy, Swapys

— Swap;,Swap,3Swap5Swapy, — SwapsSwap;3Swap, 4 Swap,s

— Swap,Swap;3SWap;4SWapys — Swap,Swap;3Swap,,Swap,

+ Swapy3Swapy, Swap,s; + SWapPgy;SWapPy, SWapPsys + SWap;5SWapPys SWapay
+ Swap;,Swap,s Swap,s + Swap,SwapysSwapys + Swap,,Swap;;Swapys
+ Swap,,Swap,39wap,; + Swap,,SwWap;39Wapsys + Swap;,Swap;3Swapay,
+ Swap,Swap,3Swap,; + Swap,,Swap,3Swap;, — SwapygSwap,s

— Swap,gSwapy; — SwapysSwap,, — Swap;;Swapyg — Swap;,Swap,g

— Swap,Swap,3 + Swapgs

SwapsSwap;,Swap, ;Swap;3 = —Swap;,Swap,3Swapy, Swapgs

+ Swap,Swap,3Swap;sSwaps, + Swap,,Swap;sSwap;5Swapo,

+ 2 Swap,,Swap,3Swap, ,Swap,; + Swap,,Swap;5Swap, s Swapss

+ Swap;,Swap;3Swap, ,Swapys + 2 Swap;,Swap;3Swap, ,Swap; 5

— SWapy3SWapy,SWap,; — SWapySwapy, SWapy; — SWap,5SWapy;Swapy,
— Swap,Swapy3Swap; — Swap;,Swap,gSwapy; — Swap,Swap;;Swap,g
+ Swap,39Wapy; Swaps, + Swap;39wWapsy,Swap,s + SWap;3SWapy,SWapss
+ Swap,3Swap, Swapys — Swap,3Swap;;Swaps, — SWap;33wap;,Swap
— SwapygSwap,sSwapgs — Swap;gSwapy,Swap; — Swap;,Swaps,Swapys;
— Swap,Swapg,Swapgs — Swap;,Swap,sSwapg, — Swap,Swap;,Swapy;
— Swap,Swap,Swapgs — Swap;,Swap,Swap; — Swap,Swap;sSwapy;
— 2 Swap,,Swap;sSwap;; — 2 Swap;,Swap,3Swap,, + Swaps,Swap,s

+ Swaps,Swapss + SwapyzSwap,s + SWapy3Swap,s + SwapyzSwapy,

+ Swap;sSwaps, + Swap,5Swapsys + Swap,,Swap,s; + Swap;,Swapss

+ Swap,4Swapy; + Swap,Swap;; — SWap;3SWapys; — SWap;3SWapy,

+ Swap;35Swap,5 + Swap3Swap,, + Swap;,Swap,s; + Swap;,Swapss

+ Swap,Swaps, + Swap;,Swap, s + Swap,Swap;, + Swap;,Swap,3

— Swap,; — Swaps; — Swaps, — Swapyg — Swap;; — Swap;, — Swaps + 1

Swap,,Swap,sSwap,,Swap;3 = —Swap;,Swap;3Swaps,Swapss
— Swap;,SwWap,3Swap,sSwapy, — Swap;,Swap,3Swap, ;Swap,;
— Swap,,Swap,3Swap,;Swapgs — Swap;,Swap,3Swap, ;Swap;

+ Swap,,Swaps, Swap,; + Swap,,SWaps,Swapss + Swap;,Swap;;Swapay



QUANTUM MAX d-CUT VIA QUDIT SWAP OPERATORS 69

+ Swap,Swap,,Swap,s; + Swap;,Swap;,SWapss + SWap;,Swap,Swap
+ Swap;,Swap;3Swap,s; + Swap;,9wap;3Swapss + Swap,,Swap;3Swapsy,
+ Swap,,Swap,35wap;; + Swap;,Swap;3Swap;, — SWap;9oWap,;

— Swap;,Swapg; — SWap,Swaps, — SwappSwap;; — Swap,Swapy

— Swap;,Swap;3 + Swap,

Swap sSwap,3Swap,Swap;y; = —Swap;,Swap,,; Swapyz Swapys

— Swap;,SwWap, ;Swap,sSwap,y — Swap,pSwap,3Swapz,Swapg;

+ Swap;,Swap,35Wap,y, SWapss — 2 SWap;5SWap;3SWap,55wWaps,

— Swap;,Swap,3Swap,5Swapy, — 2 Swap;,Swap,3Swap;,Swap

— Swap,,Swap,3Swap,Swaps; — Swap;,Swap,3Swap, 4Swap,;

— 2 Swap,,Swap,3Swap,,Swap5 + Swapy;Swaps,Swapss

+ SWapy; SWapys SWaps, + SWapy; SWapy, SWap,s + SWapysSWapy, Swapas
+ Swap;5SwWapy3Swaps, + SWap;5SWapygSWapsy, + SWap;,SWapes SWap s
+ Swap,, Swapy;Swapys + Swap, ,Swap,5SwWapy; — SWap;39Wapys SWapsy
— Swap;3Swapy, Swap,; + Swap,35wap,;Swaps, + Swap;35wap;;Swapsy,
+ Swap;3Swap;,Swap,s; + Swap,3Swap;,Swapss + Swap,;Swap;,Swap;;
+ Swap,,Swaps,Swap,; + Swap,,SWaps,SWapss + SWap;,Swap;5Swapay
+ Swap;,Swap ,Swap,s + 2 Swap;,Swap, ,Swapss + Swap,,Swap,,Swap,s
+ Swap;,Swap; ,Swapsys + 2 Swap;,Swap,,Swap;; + Swap;,Swap;sSwap,s;
+ Swap,,Swap,3Swaps, + 2 Swap,,Swap,3Swap,; + 2 Swap,,Swap,sSwap,,
— Swapg,Swap,; — Swaps,Swapgs — SWapy,Swapss — SWapPy, SWapys

— Swapy;SwWap,; — SWapPy3Swapy, — SWapyzSWapy; — SWapPy3Swapy,

— Swap,;Swapg, — Swap;5Swapy, — Swap;55Wapy; — Swap;,Swapy;

— Swap,,Swapss — SWap;,SWapyg — SWap;,SWap;; + Swap;3Swap,s

— SwapgSwap; — SwapysSwapy, — Swap;ySwap,; — Swap;;Swaps;

— Swap;,Swaps, — Swap,9wap,; — 2 Swap;,Swap;, — Swap;,3wap;;

+ Swapys + Swapss + Swapsy + Swapyy + Swap,s + Swap; + Swapy, + Swap;, — 1

Swap,3Swap,Swap;sSwapy, = Swap;,Swap,4Swap;sSwap,s

+ Swap;,Swap,35Waps, SWapss — SWap;9SWap;3SWapy, SWapss

+ 2 Swap,,Swap,3Swap,sSwaps, + Swap;,Swap;3Swap,;Swapay,

+ Swap,,Swap,3Swap,,Swap,; + 2 Swap,,Swap;3Swap,Swap;

— Swap,3Swaps,SWapss — SWap,ySwap,; SWapsy — SWapyzSwapy,Swapys
— SWap,3SWapy,SWapy; — SWap;5Swap,gSwapg, — SWap5Swap,ysSwap,,
+ Swap;,Swapy; Swapss — Swap; Swap,;Swapys + Swap;sSwapysSwaps,
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+ Swap;sSwap, ,Swapy; — Swap;gSwap,Swap,; — Swap,Swaps,Swap,;
— Swap,Swapg,Swapgs — Swap;,Swap,;Swapg, — Swap,Swap;,Swaps;
— 2S5wap,Swap,,Swap,s — Swap;,Swap,35wWap,; — SWap;,SWap;3Swapay
— 2 Swap,Swap,3Swap,; — Swap,,Swap,39wap;, + Swaps,Swap,s;

+ Swaps,Swapss + Swapy,Swapss + SWapy, SWap,s + Swapy;Swap,s

+ Swap,ysSwaps, + SWapPy3SWapys + SwapysSwap,y, + Swap;sSwaps,

+ Swap,55wapy, + Swap,55wapy; — Swap;,Swapsys + Swap;,Swap;;

— Swap;35Wapys + Swap,3Swap;; + Swap;,Swap,s + Swap;,Swapss

+ Swap,Swaps, + Swap,Swap, s + Swap,,5wap;, + Swap;,Swap,3

— Swap,; — Swaps; — Swaps, — Swapy, — SWapyg — SWap;; — Swapy + 1

Swap,,Swap,3Swap,Swap5 = —Swap;,Swap, s SWapy; Swapy,

— Swap,Swap, s SWap,5Swap,g — SwWap;ySwap,3Swap,;Swaps,

— Swap,Swap,3SwWap5Swapy, — Swap,Swap,zSwap,4Swap,

+ Swap,;Swapy;Swaps, + Swap,5SwWapysSwaps, + Swap,,Swap;;Swapas
+ Swap,3Swap,sSwaps, + Swap,;Swap,;Swap,y, + Swap;sSwap;,Swap;;
+ Swap,,Swap,5Swaps, + Swap,,Swap;55Wapy, + SWap;,SWwap;5SWapas
+ Swap;,Swap,,Swap;5 + Swap;,Swap;35wap,5 — Swap;5Swapsy

— Swap,55Wapy, — SWap;5Swap,y — Swap,,Swap;5 — Swap,;3Swap;

— Swap;,Swap,; + Swap 5

C.5. Gell-Mann matrices of size 4 x 4. In the case d = 4, the fifteen 4 x 4 Gell-Mann
matrices are

0100 0 —i 00 1 0 00
1000 i 0 00 0 -1 00
Al_0000 AZ_0000 A3_0000
000 0 0 0 00 0 0 00
0010 00 —i 0 0000
0000 00 0 0 0010
A4_1000 A5_1000 A6_0100
0000 00 0 0 0000
00 0 0 10 0 0 000 1
\ 00 0|, _1fo1 0 0], [0000
"loi o of T y3l00 20| 0000
00 0 0 00 0 0 1000
000 —i 0000 000 0
000 0 000 1 000 —i
Al0_0000 All_0000 A12_0000
i 00 0 0100 0i 0 0
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0000 000 0 100 0
o000l o000 o_ L]ot1o o
Y1000 01 71000 - BB lo0 1 0

0010 00 i 0 000 —3

Any product of two such matrices can be expanded in this basis according to a similar
formula to (C.2),

15
(C.13) Aoy = 5ab1+2 (d™"C 4+ ifo%¢) A,
c=1

where the structure constants f»*¢ and d**¢ can be again computed via
1 1
fobe = —Zitr(Aa[Ab, A\) and d*"¢ = 1 tr(Aa{ s, Ac}).
In this case the nonzero f**¢ are

f1,2,3 —1, f1,5,6 fl ,10,11 f3 6,7 f3 11,12 f4 10,13 f6,12,13 _

f1,4,7 :f1,9,12 f2 ,4,6 f2 ,9,7 f2 ,9,11 f2 ,10,12 f3 4,5 f3 9,10 _

f4,9,14 _ f5,9,13 _ f5,10,14 _ f6,11,14 _ f7,11,13 _ f7,12,14 _ %’

—3

FASS 678 _ V3 8,9,10 si112 1
ot ==, for = = —,
2 2v/3
s1314 L 91015 _ ;111215 _ 131415 |2
f = ——, f =f =f =1/5
V3 3
and the nonzero d*¢ are
1 1
JUL8 228 _ A8 _ ’ LGN LR ERE RS VR Y
V3 V3
gL _ 2205 _ 3315 _ ghAls _ g5515 _ 46615 _ gTT15 _ 8815 _ 1
V6

b
1
J9915 _ 10,1015 _ JILIL15 _ 7121215 _ J13,13,15 _ 714,14,15 NG

L6 — gLBT — gL901 _ g11012 _ 256 _ 210,11 _ 344 _ 355 _ 7399 _

J310.10 _ 49,13 _ 41014 _ 510,13 _ 461113 _ 16,1214 _ 712,13 _ 1

27
A2AT — 2912 — 366 BTT gL 312,12 _ 75,9,14 _ 47,1114 _ _1
27
1 2
d448 d558 o d668 d7’7’8 — _ ’ d15’15’15 — _ =
2V/3 3
d8,9,9 — d8’10’10 — d8,11,11 — d8,12,12 — 1

2V/3
Note that the structure constants f®*¢ and d**¢ with a,b,c € {1,...,8} coincide with
the structure constants pertaining to the 3 x 3 Gell-Mann matrices.
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(4)

By Proposition 1.11, each swap matrix Swap;;” can be written in terms of the 4 x 4

Gell-Mann matrices as follows

15
1 1 o
(C.14) Swap,; = LR > AN
a=1

C.6. Linear subspace of M. (C) spanned by the products of at most 4 swap
matrices. Again, any two tuples (¢,7) and (k,l) are compared w.r.t. the lex ordering.
Let Bs be the set of all products of at most 3 swap matrices that correspond to different
permutations in 5,. For fixed i < j < k < [ denote by Bjj; the set consisting of the cubics
Swap,;Swap ;. Swapy,, Swap,;Swap;Swapy,, Swap;,Swap;,Swap;;,
(C.15) SwapikSwaplewapﬂ, SwapilSWaplewapjk, SwapilSwapleWapjk
and for fixed 7 < j < k <l < m denote by B;jum the set consisting of the quartics
Swap;;Swap ;. Swapy,Swapy,,, Swap,;Swap,,Swapy,,, Swap,,,
Swap,;Swap ;,Swap,, Swapy,,,, Swap;;Swap ;;Swap,,, Swap,,,,
Swap,;Swap;,, Swapy,, Swapy,, Swap;;Swap,,, Swap;,, Swapy,,
Swap,,Swap . Swap; Swap,,,, Swap;;Swap,;,Swap,,Swap,,,,
Swap;;Swapy,,Swap ;;Swap;,,,, Swap;,Swap,Swap,,, Swap,,,
Swap; Swapy,,, Swap ,, Swap;;, Swap;,Swapy,, Swap;,,,Swap,;,
(C-16) Swap; Swap ;,Swap,, Swapy,,, Swap;Swap,;Swap;,,Swap,,,,
Swap; Swapy, Swap ;. Swap;,,, Swap; Swapy,Swapy,,Swap,,,,
Swap,; Swap,,, Swap,,,,Swap;, Swap;Swap;,,, Swapy,,, Swapy,
Swap;,,, Swap ,, Swap,,Swapy,, Swap,,,Swap,,,, Swap;Swapy,,
Swap,,, Swapy,,, SWap,,Swap;, Swap;,,, SWapy,,Swap,,Swap,;,

Swap,,, Swapy,, Swap ; Swap ..

Proposition C.5. The set By consisting of Bs and the quartics
Swap,;Swapy, Swap,,Swap,; 1 <j, k<[, p<gq, r<s,

(C.17) .

(i,7) < (k,1) < (p,q) < (r,s);
(C.18) Swap,;Swap ;. Swap,,,Swap,. 1<j<k, p<q,r<s,

' Swap,;Swap,;, Swap,,,Swap,. p,q,r,s & i, 5, k}, (p,q) < (r,s);
(019) t'Swappqv teBijkla [ <.] < k<la p <g, p7q¢ {27]7]{:71}7
Swap,;Swap;, Swap,,,Swap,,., Swap;;Swap,Swap,, Swap,,.,

(C.20) Swap,;Swap;,Swap,,Swap,,, 1<j<k, p<q<r, i <p,

{i, 5.k} 0 {p. g, r} = 0;
(C.21) t € Bijkim, <j<k<l<m

is a basis of the subspace of M"(C) of polynomials in the Swap;; of degree at most four.
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Proof. For the spanning property of By, identify the products of the swap matrices with the
corresponding permutations in 5,. Note that the only permutations that can be written
as a product of at most four transpositions that we omitted from B; are the 5-cycles
of the form (imlkj) for i < j < k <l < m. But these are in the span of By by the
degree-reducing relation (3.1) with d = 4.

The proof of the linear independence of B, again relies on the properties of the 4 x 4
Gell-Mann matrices presented in Subsection C.5.

Suppose there is a linear dependence among the elements of B,. Then, using (C.14),
express each of the appearing terms w.r.t. the basis (1.11) consisting of different combi-
nations of tensor products of the fifteen 4 x 4 Gell-Mann matrices.

(a) First, consider the elements in (C.17) and observe that for any choice of i < j, k <
l,p<q,r <swith (i,7) < (k,l) < (p,q) < (r,s), the highest order terms in the expansion
of Swap;;SwapySwapy,Swap,s are of the form

MNoMAFXN NN NS a,be,d € {1,... 15}

By the product formula (C.13), the elements in (C.17) are the only ones that have terms
of order eight and more precisely, for any choice of 1 < 7,k < I,p < ¢q,r < s with
(i,7) < (k1) < (p,q) < (r,s), the element Swap;;SwapySwap,,Swap,, has the term
AL XE AL AP AINT A3, which does not appear in the expansion of any other element of By.
Hence, the coefficients next to each of the elements in (C.17) have to be zero.

(b) Now the elements in (C.18) are the only ones in B4 that have terms of order seven
(meaning with seven different positions i, j, k, p, ¢, 7, s) in their expansion. For any choice
of i < j<k,p<gqr<swithpqrsé¢{ijk}, (p,q) < (r,s), the highest order terms
in the expansion of Swap;;Swap;zSwap,,Swap,s are of the form

AL M AR AP AT NS, a,b,c,d e {1,...,15},
while for Swap;;Swap;;Swap,,Swap,s they are of the form
ACXENEAENPNENT NS = M AL XEXENPATAT NS abc,d € {1,...,15}.
As noted, the structure constants f®*¢ and d**¢ with a,b,c € {1,...,8} coincide with
the structure constants pertaining to the 3 x 3 Gell-Mann matrices. Hence, similar to
part (b) of the proof of Proposition C.2, for any choice of i < j < k,p < ¢,7 < s

with p,q,7, s ¢ {i,7,k}, (p,q) < (r,s), the element Swap;;Swap,,Swap,,Swap,, has in its
expansion

Ao AL NLAE AEAZ NGNS + AU NS AEAEAIAG NS = i A M AE A AE AT NS + R N AENE MG NS
But Swap;;jSwap;,Swap,, has in its expansion
NP AL NS AE AL NG ASHNE M AL AE AE AT NG A = —i A5 M AR AR AL NG As+5 A N AENE MG NS

By the same argument as in part (b) of the proof of Proposition C.2; all the coefficients
next to the elements in (C.18) are zero.

(c) Now the elements in (C.19) and (C.20) are the only ones with terms of order six
(i.e., with six different positions denoted by either i, j, k,l,p,q or 4,5, k,p,q,r) in their
expansion.
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For the elements in (C.19), given any choice of i < j < k < I, p < ¢ with p,q ¢
{1, j, k,l}, the highest order terms are of the form
AL

where X is a highest order term of an element of B;;i; as in the proof of Proposition

C.2. For the elements in (C.20), given any choice of i < j < k,p < ¢ < r,i < p with
{i,7,k} N {p,q,r} = 0, the highest order terms of the three appearing types are

Swap,;Swap ;. Swap, Swap,,. : AL A AR AP AT AT AT
Swapl-j Swapj powWap,, Swap,, : )\3 )\g /\Z /\],f NEXINE N,
Swap;;Swap, Swap,,Swap,, : AL A AjAF AL AL AL
First, consider (C.20). For fixed i < j < k,p < ¢ <r,i < p with {i,5,k} N {p,q,r} =0,
denote the coefficients next to the elements
Swap, ;Swap ;. Swap,,, Swap,,., Swap;;Swap;,Swap,,,Swap,,., Swap,; Swap,;; Swap,,,Swap,,,.

by (31, B2 and (33 respectively. Clearly, these are the only elements in (C.20) whose highest
order terms involve precisely the positions ¢, j, k, p, ¢, r. So comparing the coefficients next
to the basis elements Aj Mo A¥, AP AT AL XS XS AR AT AL AL and A5 M) AR AP AT AL give the
following equations

Xy Mo AT ATA AL . =B — B+ B3 =0,

NN A XN =B+ Bo+ B3 =0,

NN AL NAIN . =B+ By — B3 = 0.
The above system has a unique solution 8; = 2 = 3 = 0. Note that each of the highest
order terms of the elements in (C.19) necessarily has one of the Gell-Mann matrices A re-
peated twice. So the coefficients next to the basis elements A Mo ATy AL ] A7, Xj Ag ATy A AL A7
and A5 M) A5 AP AT AL in the expansion of the elements in (C.19) are zero. We conclude
that the coefficients next to the elements

Swap;;Swap ;. Swap,,,Swap,,., Swap,;Swap;,Swap,, Swap,,., Swap,;Swap;; Swap,,,Swap,,.,

are zero and by analogy, the coefficients next to all the elements in (C.20) are zero.
Now consider (C.19). For fixed i < j < k <, p < q with p,q ¢ {i,7,k, [}, denote the
coefficients next to the elements

Swap,;Swap ;. Swapy, Swap,,,, Swap,;Swap,;Swapy,Swap,,,, Swap;,Swap;,Swap;Swap,,,
SwapikSWapklSwapleWappq, SwapilSwaplewapijwappq, SwapilSwapleWapijwappq

by ai,...,as respectively. Clearly, these are the only elements in (C.19) whose highest
order terms involve precisely the positions i, j, k, [, p, ¢. So comparing the coefficients next
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to several basis elements of the form \! )\Z AL AP A gives the following equations
MM A A ARNS B — s =0,
MM AN AL B — 5 =0,
A A AT A M AS s By — i =0,
A M AN ABAS B — By — Ba =0,

WAATA NS s =Byt By + Ba = B = 0,
AL MM N NN e =B+ Bo+ B5 — B = 0.
The above system has a unique solution 5; = - - - B = 0. Hence, by analogy, the coefficients
next to all of the elements in (C.19) are zero.

(d) The quartics in (C.21) are now the only ones in B, that have terms of degree five.

For fixed i < j < k < | < m denote the coefficients next to the quartics in (C.16)
by 71, ..., 723 respectively. Clearly, these are the only elements in (C.21) whose highest

order terms involve precisely the positions 7, j, k, [, m. Similar to before, we now compare
the coefficients next to several basis elements of the form Ai X} A AL A™ to get a system

(C.22)

of equations. By symmetry note that if \! )\i AENLA™ i) e.g., a term in the expansion
of Swap,;Swap,, Swap;,Swap,,,, and o is a permutation of the positions ¢, j, k, [, m, then

AZ® AZU )2\ )\2(1) A2 is a term in the expansion of

Swapo(i),a(j) Swapo(j),a(k) SW&Pa(k),a(z) Swapa(l),o(m) ‘
By this observation it is easy to quickly deduce several equations, e.g.,
LAAAGAT =+ 721+ =0,
AL XA AG T =2+ 722 — Ye3 + 73 =0,
(C.23) AN AR AT s 40 — Y19 + 76 = 0,
DA AT T =y 4921 — 920 + 75 =0,
Ay XN AT . — 5 + 920 + 71 = 0.
The remaining 19 equations are computed by analogy. To apply this technique correctly it
is important to keep in mind that the equation given by Ai; X \i AL A7 is in fact —v; 4791 —
Y24+74 = 0, where 724 = 0 is the coefficient corresponding to Swap,,, Swap,,, Swap,,Swap .
(that we excluded from the basis, but that we need to keep in mind to calculate the

following equations correctly). Combining all the 24 equations (C.23) with the ones
obtained by considering the terms

ALt M AT A5 A, AT A AT Ag AT, AT A S A A

Xt X AGASATE, ATy Ms AT A AT, ATy Ag s ALY,
we get a system with unique solution 73 = --- = 73 = 0. Hence, by analogy, the
coefficients next to all of the quartics in (C.21) are zero as well.

(e) Now the cubics (C.15) are the only ones with terms of degree four in their expansion.
But comparing the coefficients next to the basis elements
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gives back the system (C.22), which implies that the coefficients next to all of the cubics
are zero as well. We are left with a linear dependence involving terms of degree at most
two, which contradicts linear independence of By as shown in Proposition C.1. [ |

APPENDIX D. EXPLICIT EIGENVALUE COMPUTATION FOR CLIQUE HAMILTONIANS OF
GENERAL d-ROW PARTITIONS

Here, we give an alternative and elementary method to compute the character value
XA((77)) of a transposition (ij) using the Murnaghan-Nakayama rule [Pro07, Section
9.9.1]. Using formula (6.3), we then again compute, for any partition A = n with d rows,
the eigenvalue 7, from Lemma 6.4.

D.1. The Murnaghan-Nakayama rule. To compute the value of the character y, at
the conjugacy class of transpositions we use the non-recursive version of the Murnaghan-
Nakayama rule. It states that

(D.1) (@) =D (=)™,

T
where the sum runs over all tableaux 7" of shape A that satisfy:

e the boxes of T are filled with numbers 1,2,...,n — 1 such that 1 appears twice
and all the others appear once,
e the numbers in every row and column are weakly increasing.

Here ht(T") is one if both 1’s are in the first column and it is zero if they are in the first
row.

Clearly, the set of all such tableaux is in bijection with the set of all standard Young
tableaux of shape \. This means that

xx((i j)) = #(standard Young tableaux with 1 and 2 in the first row)—
#(standard Young tableaux with 1 and 2 in the first column).

It is easy to see that the standard Young Tableaux with 1 and 2 in the first row are
in bijection with the standard Young tableaux of the shape that we get by removing the
first two boxes from the first row of A. Similarly, the standard Young Tableaux with 1
and 2 in the first column are in bijection with the standard Young tableaux of the shape
that we get by removing the first two boxes from the first column of A. To count these we
use the hook-length formula for skew shaped Young tableaux [Narl4, MPP18].

For a partition p denote by [u] the diagram (i.e., tableaux without numbers) of shape
p. If [p] is the diagram that we cut out of [A], then denote the resulting skew shaped
diagram by [A/p] and the number of all standard Young tableaux of shape \/u by f**.
For a box (7, ) € [p] such that the boxes (¢4 1,75), (4,5 +1),(:+ 1,5+ 1) € [A] are not in
(1], we say that an excited move with respect to A is the replacement of [u] by

(LG )}) UG+ 15+ D).

An excited diagram of shape \/pu is a diagram contained in [A] that can be obtained
from [p] with a series of excited moves. Denote by £(A/u) the set of all excited diagrams
of shape A/ (here £(A\/u) is empty unless [u] C [A]) (see Example D.1).
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The hook-length formula for skew shaped tableaux [MPPlS Theorem 1.2] states that

(D.2) =il Y T

Z
DeEN/p) i A/ )

In our case, x((i,7)) = f»* where u = (1,1) is the two-row partition of two. Hence,
if (i1, 71) and (is, j2) are the two distinguished squares in an excited diagram D of shape
A/p, the summand in (D.2) pertaining to D can be expressed as

xa(e)
n!
Example D.1. For n = 7 let A = (4,3) and p = (2). Then there are three excited

diagrams of shape \/p,
- B e

D.2. Clique eigenvalue computation. Next we present an alternative method to prove

(D.3) hooky (i1, j1) hooky (42, J2).

Proposition 6.7, which we restate below.

Proposition 6.7. Let ny be as in Lemma 6.4. For any A= n with rows \; > -+ > Ag,

dd—1)2d—1) < 2
(D.4) =1’ + G - ; (M= (k—=1))".

Sketch of proof. Let A F n be a partition with at most d rows \; > --- > Ay > 0. To
calculate 7, through the formula (6.3) we first compute the value x((ij)) of the character

X at the conjugacy class of transpositions. For that we use the Murnaghan-Nakayama

rule as presented in Subsection D.1.

First consider the excited diagrams of shape A\/u with u = (2). We only tackle the most
general case with Ay > d + 1 (i.e., the case that gives the most excited diagrams). By
a similar reasoning as before, the box (1,1), can be moved only after the box (1,2) had
already been moved. If (1,1) is, say, in position (k, k) for k = 1,...,d, this means that
(1,2) must have been moved to one of the d — k + 1 positions (k,k + 1),...,(d,d + 1).
So if (1,1) is moved to (k,k) and (1,2) is moved to (j,j + 1) for some j = k,...,d, the
contribution to (D.2) of this excited diagram computed via (D.3) is

D ok (0, k) ook (7 + 1) = 0D (3 — (k= 1)+ d = )y~ +d ).
Hence,

FM@) ZZ e — 2k + d 4+ 1)(\; — 2j + d).

n(n k 1 j=k

For the excited diagrams of shape A/u with p = (1,1), we again only consider the case
with Ay > d — 1, which gives the most excited diagrams. In this case, if the box (1,1) is
moved to position (k, k) for some k = 1,...,d — 1, the box (2, 1) must have been moved
to one of the d — k positions (k + 1,k),...,(d,d —1). So if (1,1) is moved to (k, k) and
(2,1) is moved to (j + 1,7) for some j = k,...,d — 1, the contribution to (D.2) of this
excited diagram computed via (D.3) is now

XA( )

hooky /1,1y (k, k) hooky 1,1)(j + 1,7)

X;L( )(A —(k=1)+d=k)(N —(j —2)+d—j)
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Hence,
d—1 d
FMLD — n_l SN -2k +d+1)(N -2 +d+2).
k=1j=k +1

Putting all together we get

) o) 2

d
=nn—1) =Y Y (\—2k+d+1)(\; —2j+d)

k=1 j=k

d
+ Z M =2k +d+ 1)\, —2j +d +2)
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