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Abstract

Compiling Bell games under cryptographic assumptions replaces the need for physical
separation, allowing nonlocality to be probed with a single untrusted device. While Kalai et al.
(STOC’23) showed that this compilation preserves quantum advantages, its quantitative quantum
soundness has remained an open problem. We address this gap with two primary contributions.
First, we establish the first quantitative quantum soundness bounds for every bipartite compiled
Bell game whose optimal quantum strategy is finite-dimensional: any polynomial-time prover’s
score in the compiled game is negligibly close to the game’s ideal quantum value. More generally,
for all bipartite games we show that the compiled score cannot significantly exceed the bounds
given by a newly formalized convergent sequential Navascués-Pironio-Acin (NPA) hierarchy.
Second, we provide a full characterization of this sequential NPA hierarchy, establishing it as a
robust numerical tool that is of independent interest. Finally, for games without finite-dimensional
optimal strategies, we explore the necessity of NPA approximation error for quantitatively
bounding their compiled scores, linking these considerations to the complexity conjecture
MIP = coRE and open challenges such as quantum homomorphic encryption correctness for
“weakly commuting” quantum registers.

1 Introduction

Since Bell’s groundbreaking work [Bel64], understanding and utilizing quantum nonlocality has been
pivotal for both the conceptual foundations and practical applications of quantum theory. A central
tool for probing nonlocality is the study of correlations arising from (nonlocal) Bell games [Bru+14],
wherein multiple provers (also called players) coordinate their responses to questions chosen by a
verifier (also called the referee). Quantum theory famously allows for correlations outside of classical
theories, enabling quantum provers to sometimes achieve higher winning probabilities or “higher
scores” than their classical counterparts.

The standard Bell game setup involves multiple, spatially separated provers who cannot com-
municate during the game, see Fig. (a). This spatial separation is the typical way to enforce
no-signaling constraints on the players or devices. However, verifying spatial separations between
multiple untrusted quantum devices can be practically challenging. Moreover, from a theoretical
standpoint, it is compelling to explore whether the power of quantum nonlocality can be verified



and utilized using a single (untrusted) quantum device. A naive attempt to adapt a bipartite (Alice
and Bob) Bell game to a single prover is as follows: the single prover receives Alice’s question
x, computes her answer a, they subsequently receive Bob’s question y and compute his answer b.
However, here the prover has full information about Alice’s question (and answer) when deciding
how to answer Bob’s question. This allows for coordination not permitted in the nonlocal case,
and completely undermines the game’s no-communication assumption. To simulate the intended
separation within a single device, the verifier must restrict information flow between the “Alice’
and “Bob” rounds.

Homomorphic encryption (HE) offers a natural solution: the verifier can first encrypt Alice’s
question into Encg(z) using a secret key sk, and ask the prover to provide an encrypted answer
Encgi(a). In HE the prover does not know the secret key, and therefore never has a decryption of
Encgg(x) in their possession. Nonetheless, the HE satisfies a correctness functionality that enables
the prover to compute an outcome o = Encg(a) as if they knew z, despite never being given
x in the plain (i.e., never given a decrypted z). The result is that, when Bob goes to make his
computation based on y, it can no longer depend on (x,a) in any meaningful way, as he only has
access to their encryptions (Fig. [I}(c)). However, to allow for quantum strategies, conventional
HE will not suffice, because the player strategies involve quantum computations and entanglement:
the HE of Alice’s part of the strategy should not destroy her pre-shared entangled state with Bob.
Therefore, we require a flavour of “quantum” HE which allows for the homomorphic evaluation of
quantum circuits and satisfies a correctness with respect to auxiliary entangled systems functionality.
Fortunately, constructions of quantum homomorphic encryption (QHE) schemes for polynomial size
quantum circuits, with these additional properties, were established in [Bral8; [Mah20], based on
the (post-quantum) security of the learning with errors (LWE) problem. This approach was used by
Kalai et al. [Kal+23], establishing the first compiled Bell games, where a multipartite Bell game can
be transformed into an interactive protocol with a single quantum prover using a QHE scheme, at
the cost of involving a number of rounds proportional to the number of parties. They demonstrated
the classical soundness of such compilation, meaning that a cheating classical prover cannot exceed
the classical score at the standard Bell game. Yet, an important issue was left open by their work:
the quantum soundness, that is whether the compilation preserves the maximal quantum score.

More explicitly, the possibility of a dishonest quantum prover achieving scores for the compiled
Bell game that significantly exceeded what was possible in the spatially separated Bell game was not
ruled out. To date, this issue has been resolved in the negative for a number of cases like XOR and
other simple Bell inequalities [Bar+-24; Cui+24; [MPW24; NZ23|, such as the CHSH game |Cla+69].
For these games, it was shown that no efficient quantum prover could attain a winning probability
negligibly (with respect to the encryption scheme’s security parameter \) greater than the quantum
value of the original game. Recently, some of us proved quantum soundness of all Bell games in the
asymptotic limit of the security parameter going to infinity [Kul4+25|. More precisely, we showed that
for asymptotically large enough security parameter A, the maximal quantum score at the compiled
and standard Bell games is the same. Yet, this result is not quantitative, as it does not involve an
explicit upper bound on the compiled score for security parameters A. In particular, it does not
inform a verifier of the security level needed to ensure the quantum provers’ behavior is suitably
nonlocal, making this work unsuitable in practice.

In this work, we obtain quantitative quantum soundness bounds for all bipartite Bell games
with finite-dimensional optimal quantum strategies, generalizing the results from [Bar+-24; |Cui+24;
Kul+25; [MPW24} INZ23|. More precisely, we show that the score a dishonest quantum prover can
achieve at the compiled Bell game can explicitly be upper-bounded by a sequential variant of the
Navascués-Pironio-Acin (NPA) hierarchy [NPAO8; PNA10], which we also fully characterize in this
work. With our result, the verifier can in practice bound the score of the dishonest prover by first
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Figure 1: (a) Standard nonlocal Bell game: A verifier V sends questions z and y to two spatially
separated provers, Alice A and Bob B, who reply with answers a and b. For example, using quantum
theory, the provers may pre-share a quantum state o to generate better answers. (b) Sequential Bell
game: The verifier V' first send question x to Alice and receive her answer a; subsequently, V' sends
y to Bob who replies with b. This protocol is said to satisfy the strongly no-signaling condition if
B’s response is independent of A’s question x. In the quantum realization, A first receives a state
o, measures and produce a post-measured state o,,, and then forwards it to B, with condition
Y a0ale = 2_q0aja for all z, 2. (c) Compiled Bell game: The verifier V' interacts with a single
prover P. The verifier first sends an encrypted question Enc(x) and receives an encrypted answer
Enc(a), while the second message pair y and b is transmitted unencrypted. The QHE scheme chosen
by the verifier enforces a form of computational no-signaling.

computing a bound provided by this hierarchy, and then fixing the security parameter accordingly.

1.1 Nonlocal and compiled Bell games

Nonlocal Bell games. In nonlocal Bell games, a verifier interacts with multiple spatially separated
provers, who are unable to communicate during the game. The provers receive questions from and
provide answers to the verifier according to a pre-agreed protocol. The players win or lose based on
a preset rule (see Fig. [I}(a)) determined by a winning function or predicate. The strategies that
the provers adopt can be based on different resources available (e.g., classical or quantum), and
the distinction between these theories is reflected in the corresponding Bell scores. The Bell score
is the maximum winning probability using strategies permitted in a given resource or paradigm.
For a given Bell game G, we write wqy.(G) its optimal commuting quantum score and wq(G) its
optimal tensor product quantum scoreﬂ More typically, the scores are compared in the classical
and quantum cases. For example, in the CHSH game, the best classical Bell score is 0.75, while the
optimal quantum score is wqe(Gensu) = wq(Gonsn) = cos?(m/8) ~ 0.85. This is often known as a
game exhibiting quantum advantage.

Compiled Bell games. To transform from multi-prover to a setup with a single-prover, the authors
of [Kal+23| introduce compiled Bell games Geomp, in which the no-communication constraint between
the provers is replaced by a cryptographic one, using a QHE scheme. The QHE scheme used by
the verifier is parameterized by a security parameter A\. For a chosen A, the scheme is secure
against poly(\)-runtime attacks from the prover. The verifier in the compiled game Geomp sends
an encrypted question x and receives the encrypted answer a back from the prover. The verifier
then sends y and receives b (see Fig. [I](c)). Encryption is not required in the second round because
the information is of no use later in the game. In this setting, the prover’s strategies for the

While the two are equivalent in finite dimensions, they are not the same in infinite-dimensions, and in fact there is
a Bell game for which the scores are distinct [Ji+21].



compiled game are characterized by quantum polynomial time (QPT) circuits, denoted S, which
upon obtaining x produce the outcome a. The winning probability of employing strategy S in the
game Geomp (With security parameter ) is the compiled Bell score wy(Geomp,S). This compilation
procedure guarantees classical soundness. That is, no dishonest classical prover can exceed the
maximal classical winning probability in the no communication setting. Furthermore, by the features
of the QHE scheme, quantum completeness is also guaranteed. That is, an honest quantum prover
can achieve the optimal quantum score in the nonlocal case |[Kal+23].

Establishing quantum soundness of wy(Gecomp,S) (i.e., that no dishonest quantum prover can
exceed the maximal quantum score more than some quantitatively negligible function in \) remains
open. Recently, operator-algebraic techniques [Kul+25] provided qualitative insights into this
quantum compiled value in the asymptotic limit of the security parameter (A — 00). Their approach
uses the fact that in the limit, compiled strategies correspond to strategies for sequential Bell
games satisfying the strongly non-signaling property (see Fig. (b)) These quantum strategies for
sequential Bell games turn out to be equivalent to the commuting quantum strategies [HJW93;
Kul+25], and so it follows that as A — oo, the scores wy(Geomp, S) achievable by any QPT strategy
S converge to the quantum commuting score wqc(G).

Yet, this last result is only qualitative: in practice, the verifier can only take finite A, in which
case [Kul+25] provides no concrete bound on the score wy(Geomp, S) the cheating prover can obtain,
as it does not provide a quantitative bound on how quickly these compiled scores converge for
finite A\. Therefore, the quantitative quantum soundness of all compiled Bell games as proposed
in [Kul+25| remains an open problem. This is the main challenge that our work addresses.

1.2 Main results

Our work has two primary contributions. (i) We give the first quantitative quantum soundness bounds
for every bipartite compiled Bell game whose optimal quantum strategies are finite-dimensional,
showing that the compiled score is provably close to the game’s ideal quantum score. In fact, for
all bipartite compiled Bell games, we obtain upper bounds for the compiled scores in terms of the
sequential NPA hierarchy. (ii) We formalize and fully characterize a sequential variant of the NPA
hierarchy, a tool that underpins our analysis and is of independent interest. In the following, we
give more details.

Quantitative bound for bipartite compiled Bell scores. Let G be any bipartite Bell game and Geomp
its compiled version. Our first main result upper-bounds the score wg‘omp(gmmp,S) achievable
by any QPT strategy S as the ideal commuting-operator score wy.(G) plus two error terms: an
approximation term &(n) arising from level n of the sequential NPA hierarchy and a negligible
cryptographic term (from the QHE scheme and the implementation of S). When G admits a
finite-dimensional optimal strategy, the hierarchy has a feasible solution at some finite level ng,
so €(ng) = 0 and we obtain a negligible gap to the tensor-product quantum value. The precise
statement is as follows.

Theorem A (Theorems and . Consider any bipartite Bell game G with commuting quantum
score wqc(G). Then, for any QPT strategy S and for every n > 0, its achievable score wx(Geomp, S)
1 bounded as

W)\(gcompa S) < ch(g) + E(n) + neng,n()‘)’

where e(n) 1= wi, xpa(9) — wae(G) is the approximation error from the n-th level of the sequential
NPA hierarchy, which monotonically vanishes as n — oco. The term neglg, (\) is a negligible



function (dependent on the QHE scheme, strategy S, and level n) that goes to zero faster than the
reciprocal of any polynomial in A.

Furthermore, if G admits a finite-dimensional optimal quantum strategy (i.e., the optimal
quantum correlations lie in Cy), then

W)\(gcomm S) < Wq(g) + neng()‘)a

where wq(G) is the optimal tensor product quantum score and neglg(\) is some negligible function
depending only on the QHE scheme and the strategy S.

Hence, knowing the approximation error of the sequential NPA hierarchy e(n) for a game G
provides a quantitative upper bound on the maximal score that a dishonest prover can obtain
at the compiled game Geomp With some QPT strategy S. By letting n, A — oo, we recover the
asymptotic quantum soundness result of [Kul4-25]. In addition, for all bipartite Bell games with
optimal finite-dimensional strategies, the second inequality establishes the quantitative quantum
soundness of its compiled version, which is a generalization to |[Bar+24; |Cui4-24; MPW24; |NZ23].

While the problem of deciding if a correlation admits a finite-dimensional quantum realization is
undecidable in general [FMS25], many of the most studied Bell games are known to have finite-
dimensional optimal strategies. Note also that an infinite-dimensional quantum strategy poses
several issues. First, it is unclear how to implement such a strategy efficiently with polynomial-size
circuits. Second, even if one could engineer such an implementation, compiling it while preserving its
score would require a justification of the correctness of the QHE scheme in the infinite-dimensional
setting.

The sequential Navascués-Pironio-Acin hierarchy. As a second main result, we formally introduce
and characterize the sequential NPA hierarchy (Section , which underpins our quantitative
soundness proof. While its asymptotic convergence to the commuting score (Theorem [3.1)) is a
direct consequence of [Kul+25, Theorem 5.15], we provide a concrete definition (Eq. ) and a
comprehensive characterization of its properties. One characterization that is crucial to Theorem [A]
is the following stopping criterion based on the flatness condition (aka. rank-loop, a condition on
solution’s matrix rank indicating a finite-dimensional solution) (see Theorem [3.3)):

Theorem B (Theorem . A bipartite Bell game G admits a finite-dimensional optimal quantum
strategy if and only if there exists a flat optimal solution to the sequential NPA hierarchy for G at
some finite level n.

In addition, we:

1. Establish its precise relationship to the standard NPA hierarchy at any finite level n. In
Theorem [3.2] we prove that the sequential NPA hierarchy is equivalent to a relaxed version of
the standard NPA hierarchy where Alice’s operators only appear to satisfy POVM completeness
from Bob’s perspective (Eq. ) This result implies that this relaxed hierarchy also converges
to the quantum commuting score.

2. Identify (via Theorem its conic dual with the sparse sum of squares (SOS) hierarchy
(Eq. (27))) [KMP22]. This duality not only provides a complete theoretical picture but also
connects our hierarchy to existing numerical examples [MW23, Chapter 6.7].

1.3 Methods, techniques and further results

Our results rely on a combination of existing tools adapted to the compiled game setting and novel
techniques developed in this work, which may be of independent interest. Key elements include:



1. Navascués-Pironio-Acin hierarchy and its generalizations. The standard NPA hierarchy [NPAOS;
PNA10| provides a systematic method, based on semidefinite programming (SDP), to com-
pute upper bounds on the commuting quantum score wq.(G). It involves a sequence of SDP
relaxations indexed by an integer level n, yielding monotonically decreasing upper bounds
wipa (G) that converge to wyc(G). It generalizes the Lasserre-Parrilo hierarchy |Las01} Par03]
to non-commutative settings.

As discussed in the previous subsection, to establish our quantitative bound on wy(Geomp, S)
(Theorem , we consider a sequential generalization of the standard NPA hierarchy, which
we introduce and fully characterize (Section .

2. Imperfect finite-dimensional quantum representations via flat extension. To connect finite
levels of the (sequential) NPA hierarchy to concrete quantum representations, we consider the
flat extension method [HKM12|, central to the discussion in Sections [2.2{ and and pivotal
in the proof of Theorem [B], Theorems [3.2] and Given the moment matrix from a finite level
n solution of the NPA hierarchy, the flat extension technique gives positive linear functionals
and, via the GNS construction, a representation of the associated finite-dimensional quantum
strategy that exactly satisfies all algebraic constraints imposed by that n-th NPA level.

Notably, while these extracted strategies faithfully realize the n-th level NPA model, the
constraints of this finite level are generally weaker than those of an ideal commuting quantum
strategy. For instance, the n-th level NPA hierarchy enforces that certain polynomial expres-
sions involving commutators evaluate to zero, as they would for truly commuting operators.
Le., Tr(p[AakE, Bb‘y}P) = 0 for all polynomials P of degrees < 2n — 2. However, it does not,
in general, enforce the operator identity [A,,, By|,] = 0.

Consequently, the strategies obtained via flat extension from a finite NPA level are “imperfect”
in the sense that Alice’s and Bob’s operators might not strictly commute with each other, even
though all n-th level NPA conditions (including those partial commutativity constraints and
linear constraints like POVMs summing to identity) are met. This technique thus provides
a concrete way to construct operational (albeit imperfect) quantum representations from a
finite level of the NPA hierarchy.

It is worth noting that the authors of [CV15| presented an alternative construction of almost
commuting strategies from the NPA hierarchy. While our flat extension-based method produces
strategies satisfying exact commutation when tested against low-degree polynomials their
approach yields strategies whose commutators are controlled in operator norm, with a bound
scaling as O(1/y/n) for the n-th NPA level. This is achieved by analyzing the projections
onto low-degree subspaces of the original NPA solution, rather than by constructing a new
representation from a modified moment matrix.

3. Isolating signaling effect using symmetric group representation theory. A key observation
from [Kul+25] is that every QPT strategy of compiled Bell games at security parameter A
implicitly contains a negligible amount of signaling (permitted by the QHE scheme) from the
protocol’s encrypted part to the unencrypted part with poly(\)-size circuits.

Therefore, analyzing this weak signaling effect and its impact on the compiled Bell score
is interesting. To this end, inspired by [Ren+17|, we utilize representation theory of the
symmetric group to develop a technique for decomposing the operators that do not satisfy
the ideal no-signaling conditions (Theorem . This method allows us to systematically
decompose these operators into components corresponding to a no-signaling part, a signaling
part, and a residual (positive) term. This decomposition is central to establish our main



theorem (Theorem , since it allows us to identify the no-signaling part to the sequential
NPA hierarchy at a fixed level, while the signaling part and the residual term can both be
bounded by the negligible functions from the cryptographic assumption. Observe that, since
this decomposition technique is formulated rather generally, it may also be useful for isolating
and analyzing signaling effects in other quantum protocols.

4. Almost-commuting strategies from computationally hard Bell games. Tsirelson’s theorem [SWO08]
shows that the correlations attainable from any finite-dimensional genuinely commauting quan-
tum strategies can be also obtained from tensor product quantum strategies (i.e., those in
Cqa). More recently, the approximate Tsirelson’s theorems [XRK25| investigate the situation
when the finite-dimensional quantum strategy is only approzximately commuting and provide
operator norm bounds for quantifying its “distance” to tensor product quantum strategies. We
argue that computational complexity arguments reveal this distance must be non-negligible
for certain hard Bell games.

Specifically, the MIP® = coRE conjecture (see e.g., |[Ji+21]), via Theorems and
implies the existence of coRE-hard games where almost-commuting strategies achieve scores
significantly exceeding wq.(G). For these almost-commuting strategies, the “distance” to
any Cy, strategy, as per [XRK25|, must be non-negligible to avoid contradicting this score
advantage. This implies these strategies generate correlations fundamentally distinct from
Coa-

This insight is complemented by the established MIP* = RE result [Ji4+21]. For RE-hard
games, if near-optimal almost-commuting strategies (e.g., from NPA truncation) could be
approximated by Cy, strategies with arbitrarily small error (i.e., negligible “distance”), it
would contradict the known separation between sets Cy, and quantum commuting observable
set Cye. Thus, for these games too, such almost-commuting strategies must be non-negligibly
distant from any in Cy,.

In both cases, these non-negligible distances highlight that the high-scoring almost-commuting
strategies are fundamentally distinct from any commuting tensor-product strategy.

1.4 Open problems and outlook

Building on our results, several important open questions for future research emerge:

1. Necessity of NPA approximation errors and QHE correctness for almost-commuting strategies:
A key question arising from our work is whether the game-specific NPA approximation error
g(n) is fundamentally necessary for quantitative quantum soundness to games G without a
finite-dimensional optimal quantum strategy. In Section |4}, we explore a potential argument
supporting this necessity.

Our investigation, based on the standard complexity conjecture MIP“® = coRE (Theorem ,
suggests the existence of Bell games G(™ for which the n-th level NPA score (and hence also the
sequential NPA score) significantly exceeds the true commuting quantum value (Theorem ,
implying that no universal NPA approximation error can exist for the NPA hierarchy. Notably,
if the conjecture MIP®® = coRE is false, then there is a universal NPA approximation error and
our quantitative quantum soundness results applies to all bipartite Bell games. On the other
hand, if the conjecture does hold, we provide constructions for almost-commuting quantum
strategies and weakly-signaling sequential quantum strategies that achieve these high NPA
scores (Theorem [4.1J).



Consequently, it is likely that one can construct a compiled Bell game out of the family (g(”>)
and compile the associated high-scoring strategies into a cheating QPT strategies. This would
imply the necessity of the game specific NPA approximation error for quantitative quantum
soundness. However, as we discuss in Section several significant obstacles prevent the
straightforward compilation of these high-scoring strategies. These challenges include: (1)
finding potentially more efficient constructions of the high-scoring strategies; (2) determining
the scaling of the game size for the family (Q(”)), which depends on the potential proof of
MIP® = coRE; and critically, (3) formulating and justifying a more general QHE assumption
suitable for almost-commuting scenarios, i.e., “correctness with auxiliary input for weakly
commuting registers.” Resolving these challenges is crucial to definitively establish the role of
game-specific NPA approximation errors in quantitative quantum soundness.

. Separation between sequential and standard NPA hierarchies: We introduced the sequential
NPA hierarchy and showed it is equivalent to the standard NPA hierarchy at finite levels
with relaxed POVM completeness constraints. We also characterized its stopping criteria and
identified conic dual with the sparse SOS hierarchy [KMP22; MW23|. An interesting question is
whether there exist Bell games G for which the sequential NPA hierarchy WeeqNP A (G) converges
much slower to wy.(G) than the standard NPA hierarchy wip,(G). Finding such explicit
separations (which we conjecture exist considering the numerical analysis on I3329 of the sparse
SOS hierarchy [MW23, Chapter 6.7]) would provide deeper insights into the convergence
properties of these hierarchies and the precise implications of using Arveson’s Radon-Nikodym
derivatives |[Arv69, Lemma 1.4.1], see Theorem in the sequential formulation.

. Generalization to robust self-testing for compiled games: Robust self-testing allows charac-
terizing a quantum device based solely on observed correlations, even with experimental
imperfections. While the exact self-testing result of compiled Bell games in the asymptotic
limit of the security parameter is established [Kul+25, Theorem 6.5], the question of whether
one can generalize this to the robust case in the non-asymptotic setup remains open. We
explore into this direction in Section [2.6] and note on the need to extend the notion of robust
self-testing beyond quantum strategies to cover “quasi-quantum” or imperfectly realized
strategies, possibly using results similar to [XRK25].

. Quantum soundness of multipartite compiled Bell games beyond two parties: Current investiga-
tions into quantum soundness, including our own, have primarily focused on the compilation of
bipartite Bell games. Extending quantitative quantum soundness results to games with three
or more provers is the natural next step, but it presents a significant challenge: it requires a
sophisticated generalization of operator-algebraic tools, namely for Arveson’s Radon-Nikodym
derivatives (Theorem [2.1)) [Arv69, Lemma 1.4.1].

In concurrent work, the authors of [Bar+25] address this very issue, establishing asymptotic
quantum soundness for all multipartite games by proving a new chain rule for these derivatives.
Their multipartite framework is complementary to our methods, and we believe merging their
techniques with ours provides a clear path toward a quantitative quantum soundness analysis
for multipartite compiled games.

. Exploring almost commuting correlations: The almost commuting strategies arising from
coRE-hard games (Theorems and are necessarily “far” from any finite-dimensional
tensor-product strategies. The behavior of such strategies was characterized from an asymp-
totic perspective by Ozawa |Ozal3|, who showed that as commutators vanish, the resulting
correlations converge to the commuting set Cy.. More recently, quantitative bounds have



been developed to measure the distance from an almost-commuting correlation to the sets
Cye and Cye [XRK25|. These works provide tools for exploring the structure of the set of
almost commuting correlations. This investigation, in additional to foundational interests,
is also practically motivated since enforcing strict commutation can be challenging due to
experimental limitations.

6. Bigger picture—from space-like separated provers to single compiled provers: A compelling
direction in quantum information involves replacing the requirement of space-like separation
in Bell game-based protocols with computational or cryptographic assumptions on a single
quantum device. Beyond the research on compiled Bell games already discussed, recent
works have also advanced our understanding of nonlocality under computational assump-
tions [Glu+24], as well as applications in self-testing [MV21] and device-independent quantum
key distribution [Met+21] in the single-prover paradigm.

Our work contributes to this broader effort by providing quantitative soundness bounds for
all bipartite compiled Bell games. More fundamentally, the operator algebraic techniques we
employ offer a direct bridge between the “space-like separation world” and the “compiled
single-prover world,” suggesting the potential for a unified mathematical framework. Such a
framework could systematically translate protocols originally designed for spatially separated
parties into equivalent single-prover protocols with cryptographic assumptions, all while
quantitatively preserving their essential properties (such as achievable scores).

1.5 Structure of the paper

The remainder of this paper is organized as follows. In Section [2| we establish quantitative upper
bounds for the quantum scores of compiled Bell games. More specifically, Section [2.1] introduces
compiled Bell games in the context of the sequential NPA hierarchy at level n and the associated
relaxed no-signaling conditions. Section [2.2] details the flat extension technique, crucial for extending
positive linear maps defined on subspaces of operators to positive linear functionals on the full
algebra. Building on this, Section [2.3] constructs a quantum representation for these compiled Bell
games from the extended functionals. A key technical contribution is presented in Section [2.4] where
we develop a method to decompose Alice’s operators into signaling and no-signaling components,
allowing us to bound the signaling advantage. Section then combines these elements to present
the main quantitative soundness theorems, relating the compiled game scores to the sequential
NPA hierarchy and the quantum scores. Finally, Section briefly discusses potential notions and
challenges for robust self-testing in the context of compiled Bell games.

In Section |3, we formally introduce and analyze the sequential NPA hierarchy (Eq. ) In
particular, Section [3.1| compares this hierarchy to the standard NPA hierarchy, particularly at finite
levels where the sequential version is equivalent to the standard NPA hierarchy with a relaxed
POVM completeness condition. In Section we fully describe and prove the stopping criteria
of the sequential NPA hierarchy. Finally, Section [3.3] further characterizes the sequential NPA
hierarchy by identifying its conic dual as a special case of the sparse sum of squares (SOS) hierarchy.

Section [4] explores arguments suggesting that game-specific NPA approximation errors are
essential for establishing quantitative quantum soundness in compiled Bell games. Section first
details the construction of explicit almost-commuting quantum strategies and their weakly signaling
sequential counterparts, which achieve the n-th level NPA score for any given Bell game G. Then,
Section uses the standard hardness conjecture MIP®> = coRE (Theorem to argue for the
existence of a family of Bell games G where the n-th level NPA score significantly exceeds the
true quantum commuting score. This section proceeds to define a compiled Bell game based on this



family, Geomp = ( égr@g)) », and discusses the substantial challenges in compiling the aforementioned

high-scoring strategies into a single QPT strategy (Ség\r)np) for this compiled game. Successfully

overcoming these challenges would demonstrate the necessity of incorporating NPA approximation
errors for robust quantitative soundness.

2 Quantitative bounds for the compiled scores with the sequential
NPA hierarchy

This section investigates the relationship between the optimal score of a Bell game G in the standard
commuting quantum model, denoted wq(G), and the score achievable by a prover in its compiled
version Geomp When employing a specific quantum polynomial time (QPT) strategy S. Such a QPT
strategy, S = (S))xen, is understood as a sequence of quantum strategies indexed by the security
parameter \; each S\ consists of quantum operations whose complexity (e.g., in the quantum
circuit model) is polynomial in A. (For a detailed definition of such strategies, we refer to [Kul+25,
Definition 4.3].) We denote by wx(Geomp, S) the score achieved by the prover when using the QPT
strategy S = (S))aew in the compiled game Geomp.-

Our analysis is rooted in the sequential NPA hierarchy (defined in Eq. ) for the specific
game G. Let us quantify the gap between the n-th level of the sequential NPA hierarchy and the
optimal commuting quantum score by defining

£(n) := Wiequpa (9) — wqe(9) 2 0, (1)

such that e(n) — 0 as n — oo due to the asymptotic convergence of the sequential NPA hierarchy.

Our main findings in this section establish two key quantitative bounds. First, we show in
Theorem that the score of the compiled game is inherently close to the score predicted by the
sequential NPA hierarchy at the corresponding feasible level:

Wx(Geomp: 5) < Wieqnra(9) + 15,0 (A) = wae(9) + €(n) + 050 (A). (2)

Here, s, : IN = R is a negligible function dependent on the QHE scheme used in the compilation
of Geomp, the QPT strategy S and the sequential NPA hierarchy level n. (Recall that negligible
means 7g,, goes to zero faster than the reciprocal of any polynomial in A.) This first bound
highlights that the cryptographic compilation introduces a NPA level dependent negligible error
from the corresponding sequential NPA hierarchy’s prediction. By letting n, A — oo, we recover the
qualitative quantum soundness established in [Kul4-25].

Combining this with the stopping criterion of the sequential NPA hierarchy established by
Theorem we conclude in Theorem that for any bipartite Bell games G with finite-dimensional
optimal quantum strategies:

W)\(gcompy S) < Wq(g) + 775()‘)7 (3)

where wq(G) is the optimal (finite-dimensional) quantum value and 7g(\) a negligible function
depending on the QHE encryption and the QPT strategy S. This is a generalization of [Bar+24
Cui+24; MPW24; [NZ23].

To facilitate the analysis, we introduce in Section the parameter n corresponding to the n-th
level of the sequential NPA hierarchy for game G, which is vital to the signaling decomposition
technique (Theorem and Theorem [2.7).

The section is organized as follows. Section reviews the relevant definitions for compiled
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Bell games in the context of n-th level of the sequential NPA hierarchy. Section [2.2] explains one of
our technical results, which is a key prerequisite in constructing the quantum strategy described
in Section [2.3] In Section [2.4] we present and prove technical results for decomposing Alice’s
measurements into signaling and no-signaling components. This result enables us to bound the
potential signaling effect from the encrypted part of the prover to the unencrypted part, while
associating the no-signaling part with the strongly no-signaling sequential NPA hierarchy at level n.
The technique of bounding weak signaling effects might be interesting beyond the scope of compiled
Bell games. Then, Section states the main result (Theorem and proves the quantitative
quantum soundness as a corollary (Theorem . We finish in Section with a discussion on
potential notions of robust self-testings for compiled Bell games.

2.1 Compiled Bell games and QPT strategies associated with NPA level n

We begin with a compiled Bell game Geomp where the verifier selects the security parameter A, and
considers an arbitrary QPT strategy S = (S))x with correlations (p*(ablzy)) for input-output
(a,b,x,y) € Iy x Ip x Ix x Iy. We may, without loss of generality, assume that p*(a|z) # 0;
otherwise, we can always remove the trivial pair (a, z).

By the results in [Kul+25], we can interpret the game and QPT strategy as a sequential Bell
game Ggoq With a relaxed no-signaling condition (Eq. ) In their notation, they consider the
C*-algebra B generated by Bob’s POVM elements { By, } (for output-input pairs (b,y) € Ip x Iy).
Then for the output-input pairs (a,z) € I4 X Ix, the measurements of the strategy S are captured
by the positive linear functionals

Ug“x : B — C,Va,z, s.t. p*ablzy) = U(;\|I(Bb|y)-

Moreover, the marginalization over a gives the states (i.e., normalized positive linear functionals)
o) : B — C for all x via

AL E A
U;E = Ua\z'
a

Then, by [Kul+25, Proposition 4.6], for every fixed polynomial P, there exists a negligible function
np(A) such that

(02 = o2)(P)] < np(N), (4)

where np depends on the specific polynomial P, the QHE scheme, and the QPT strategy S. Note
that this inequality does not imply there is a universal n providing a uniform bound for all P. In
the asymptotic limit of security parameter A — oo (hence n(A) — 0), one recovers the strongly
no-signaling sequential algebraic strategy |[Kul4-25, Definition 5.14].

The physical intuition remains relevant: a prover implementing Sy is, by definition, restricted to
computations (and thus, state preparations and measurements) whose complexity is bounded by
poly(A). It is therefore natural to analyze Sy not against arbitrarily complex quantum measurements,
but rather by considering its interaction with observables whose complexity is also bounded. This
motivates our choice to focus our analysis on a specific set of polynomials, namely those relevant to
a particular level of the NPA hierarchy.

More concretely, we fix a parameter n < poly()\). Instead of the full C*-algebra B, we restrict
our attention to the 2n-degree subspace Ba, = {P({Byy}) | deg(P) < 2n}. This perspective aligns
naturally with the sequential NPA hierarchy (formally defined in Eq. ), where our n corresponds

11



to the n-th level of this hierarchy. The identification with the sequential NPA hierarchy at finite
level is precisely what ensures the validity of our signaling decomposition technique (Theorem

and Theorem .

In this level n sequential NPA context, we naturally consider the restriction of Ui“x to Ba,. That
is, for the output-input pairs (a, z) for Alice, the measurements of the strategy S\ are captured by
the positive linear maps (rather than functionals on the full B)

o™ 2 By — C,Va, z, s.t. p*(ablzy) = JA’"(B(,W).

alz alz

Similarly, marginalization over a gives normalized linear maps (rather than states) o2™ : Bop — C
for all x, in the sense that

A A,
Um’n = Z Ua\g‘
a
It directly follows from Eq. , for all P € By, we have weakly no-signaling constraints as

(02" = 0™ (P)] < np(N). (5)

xT

2.2 Flat extension to functionals on full algebra

Analogously to [Kul+25|, we wish to apply Arveson’s Radon-Nikodym Theorem |Arv69, Lemma 1.4.1],
to obtain a commuting quantum strategy corresponding to p*(ab|zy). Let us first recall this key
mathematical result.

Proposition 2.1 (Arveson’s Radon-Nikodym derivative). Let w,v be positive linear functionals on
a unital C*-algebra B such that v < w, and let (Hy, 7w, |Qw)) be the GNS triple of w. Then there
exists a unique operator T € m,(B)" such that 0 < T < 1y, and

v(P) = ([T, (P)[{)
for all P € B.

Proof. This is a special case of the general completely positive map version of [Arv69, Lemma 1.4.1].
O

However, one difficulty of directly applying Theorem is that the maps U;\[g from Section

are, for each (a,z), positive linear maps on the subspace Bz, of polynomials in { By, } of degree up
An
alz
to a positive linear functional on B using a flat extension technique, similar to that in [HKM12,
Proposition 2.5 & Remark 2.6]. The method is rooted in the following characterization of positive

semidefinite (PSD) block matrices.

to 2n, rather than functionals on the full C*-algebra B. We address this by extending each o

Proposition 2.2. Let

. (A B
(s o)

be a self-adjoint matriz. Then A = 0 if and only if A = 0, and there exists some matriz Z with
B=AZ and C = Z*AZ. A crucial consequence is that the specific choice C = Z*AZ makes the

12



matric

A B
My = <B* Z*AZ)

PSD, and importantly, rank(My) = rank(A), i.e., My is flat over A. The matriz Z can be generally
computed using the (e.g., Moore-Penrose) inverse of A due to range(B) C range(A).

Proof. See [BKP16|, Proposition 1.11] (adapted to complex matrices). O

For the construction that follows, we may assume that our initial positive linear maps o

alx
are defined on the slightly larger subspace Ba, 2, ensuring cleaner notation. For each (a,z), we

associate the map U;\[;L : Bopto — C with its corresponding moment (or Hankel) matrix, indexed by

the monomials in the generators { By, }. In particular, for & < n + 1, denote by My (ai‘fg) the k-th
order moment matrix defined by

(M0 = 027 (w"0) (6)

for monomials w,v € By. It is straightforward to check o "x is positive if and only if Mk( ") =0
for every k <n + 1.

The (n + 1)-th order moment matrix, Mn+1(02|’;l)v can then be written in block form:

An
- (450 7).

a\x

B* c

where the block B has entries a/\|’;l(w*v) for monomials w € B, and v € By,41 \ By, while C has
entries defined by monomials of degree exactly n+ 1. Theorem [2.2)then implies that we can construct
a matrix Z such that B = M, (o )“n)Z and a new PSD (n + 1)-th order moment matrix
M, (o™ B
Myq (60™) = ol = 0.
n+1( alx ) ( B* Z*Mn(ai‘"g)Z -

This moment matrix Mn+1(~A";), as suggested by its notation, can be identified with a new

,71

Bopto — C via Eq. @) This new map & |’m agrees with the original o alo

positive linear map & |’m

on Byy+1 (since the blocks M, (0)“72) and B are preserved) but generally differs on Bay, 12 \ Bant1
due to the modified bottom-right block. Moreover, Mn+1( alz ") by construction satisfies the flatness
condition (also called rank-loop condition, cf. [NPAOS]),

rank(Mn+1(6)"n)) = rank(Mn(UA’n)), (7)

alz alz
which is the key to constructing a finite-dimensional representation as the following.

Proposition 2.3. Given the positive linear map 6;\[;" : Bopto — € with its (n + 1)-th order flat

moment matrix Mn+1(&2‘"§) constructed as above, and letting p*(a|z) = 0’\’”(]1) # 0. Then, there

alz
exists a finite-dimensional GNS representation (", 7" Q)‘">) of the C*-algebra B such that:

alz? zz|3: ’
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1) The Hilbert space HN™ has dimension rank M, oM™). It is spanned by vectors corresponding
alz alz
to polynomials up to degree n:

HN" = span{r"(P ‘Q

alz a\x

>|P€Bn}.

alz

Consequently, for any polynomial P € B, there exists P' € B, such that 772“7;( ) ‘92|Z> =
)\ n(P/) Q)\ n>

a|:c alz

(ii) The map 0 (cmd thus o |’: on Bap+1) is recovered by the cyclic vector: for all P € Baopy1,

oAI(P) = oA (L) - (N RN (P,

alz alz alz a|:c

(iii) The representation preserves the POVM structure of the generators: for each y, the set
{W2|’Z(Bb|y)}b forms a POVM on ’Hi“’g (higher order constraints, such as commutativity, are

not necessarily preserved, but this is not required for our current purpose).

Proof. The representation is obtained by applying the standard GNS construction to the normalized
map & alz " /p*(alx). The main consideration, differing from the GNS construction for a state on the

full algebra B, is that &2"2 is initially defined only on Ba,42. This limitation requires extra care to
ensure that the representation operators ﬁi": (X) (defined by left multiplication) are well-defined,
i.e., that they map the GNS Hilbert space ”H’\"" to itself. Thankfully, the flatness condition on the
moment matrix M, 1(6 a|x) guarantees this well-definedness, effectively through rank and dimension

constraints, allowing |’z to be a *-representation of the whole B. The properties (i)-(iii) then

follow. For detailed arguments, see e.g., [HKM12, Proposition 2.5 & Remark 2.6] or [NPAOS,
Theorem 10]. O

Thus Theorem [2.3[ allows us to consistently extend 0)‘|Z (and thereby the original 02{2) to a

positive linear functional on the entire algebra B via the formula:
02‘[;1 :B—C
An A A, A,
P ot (1) - (g | (P)IQT)

alz a\x alz

(8)

Here, and for the rest of this section, we abuse notation by using o |’x to refer to this extended
linear functional on B as well.
Finally, we define for each of Alice’s inputs x:

=i
alz -

These are indeed states on B. Positivity follows from being a sum of positive linear functionals.
Normalization, U/\n(]l) = 1, holds because they are extensions of the original U;\’" which were
normalized on By,. Furthermore, since the extension agrees with the original map on Ba, 1 (and
thus on Ba,), the property from Eq. is preserved: for each P € By, there exists a negligible
function np(A), dependent on the QHE scheme and S, such that



The flat extension procedure can be interpreted physically: for each of Alice’s outcome-input
pairs (a,x), Bob analyzes the correlations ai‘"ﬁ restricted to his measurements corresponding to

polynomials up to degree 2n + 1. He then constructs a minimal (finite-dimensional) quantum model
(,H)\,n An

alz? a|:c M alz

o n>) consistent with these observations. This model then allows extrapolation to

define o |’ for any polynomial in Bob’s measurements.
We finish the subsection with a remark on the choice of flat extension technique.

Remark 2.4. To extend a;‘[;l from Bay, (or Bant2) to B, one might observe that By, forms an operator
system for any k and be tempted to apply Arveson’s Extension Theorem [Pau02, Theorem 7.5] (or
Krein’s Theorem for functionals [Pau02, Exercise 2.10]) for this purpose. However, these theorems
require o "x to be positive on the C*-algebraic positive cone intersected with the subspace, i.e., on

By N Bopto. In our setup o |’;L is a positive linear map on Boy o, meaning that o*a|’;L 1s positive with

respect to sums-of-squares (SOS) 0’\ n(z P*P;) >0 for all P; € Byy1. The condition, Uil’;l(@) >0
for all Q € By N Bapy1, s genemlly stmnger since an element ) € B4 N Bapya might not be a SOS
of polynomials in Byy1 but of much larger degrees. Therefore, the positivity condition we start with
might be too weak for a direct application of Krein’s or Arveson’s Extension type theorems, leading us
to use the flat extension technique, which guarantees a positive (and state-like after normalization)
extension to the whole algebra B.

2.3 Quantum representation for strategies of compiled Bell games

Having constructed the states o2 B — C, which represent an effective description of the prover’s
QPT strategy Sy when analyzed at the n-th level of the NPA hierarchy, our next goal is to derive
the associated quantum representation. From this representation, we will recover its compiled Bell
score in the game Geomp, which we denote wy(Geomp, S)-

The following proposition details the construction of an appropriate representation.

Proposition 2.5. Let {U;\’n = : B — C}uery be the states derived from the QPT stmtegy Sy

a|x
at NPA level n, as constructed in Sectwn . Then there exists a cyclic representation (H), 7, |Q;\L
of B such that:
(i) There exist positive operators {A "Ya.x C Tp(B) C B(H,), where my(B)' is the commutant of
A
o (B).

n

(i) Bob’s measurements in this representation, {W,’)(Bbw)}(w are POVMs. On the other hand,
A;\"z s almost-POVM in the sense that, for any Py, Py € By, there exists an negligible function
n(A) such that

[( QI (P) (Z A - ]lH;}> T (P2)|0)] < n(A). (9)

(iii) The observed correlations are reproduced: for all a,b,z,y,

M (ablay) = (AN (B, ) I2). (10)

alz n

Proof. In contrast to the strongly no-signaling scenario in [Kul+25|, where a single state o sufficed
to unambiguously form a commuting quantum strategy for G via GNS construction, our scenario
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A, .
has many different states 0. As a result, to construct one representation, we must choose a

representative state o™ that best captures the behavior of all Ji"". To achieve this, we consider
the average state over all aa’}’",

1 A
R 11

The average state is close to every ai"n, i.e., for each polynomial P € By, there exists n(\) such
that

(™" = o) (P)] < |Ii<| D _l(o3™ =" )(P) < n().

We now construct the GNS-triple (#}, 7}, [Q})) for this average state ™. This will be the desired
n n n
representation. Clearly Bob’s operators in this representation ﬂé(Bbw) form POVMs due to the

property of .
Let us construct Alice’s operators AA[Z acting on H. To this end, also consider GNS-triples

(H) QA ny) for each o2™. Since for each z we have o ‘ " < 2", Theorem ensures the

x,mn’ ZL‘T'L’

existence of POVMs {1212‘;"} C nyn(B) C B(’va‘n) such that

pMablay) = )" (By,) = (2

m,n|

AN By, )IO,,)-

The obstacle is that these POVMs {A2|;m} all act on different Hilbert spaces rather than on H.
The remedy is to consider, for each x, an intertwiner map:
(P)on) = ma(P)[20)

J,”Vl’

W, : Hy — Hp
for arbitrary P € B. The well-definedness of each Wg‘n is ensured because the null ideal of o™"
(i.e., {P € B | c»"(P*P) = 0}) coincides with the intersection of the null ideals of all o3 (i.c.,
N AP € B | ag)c""(P*P) = 0}) due to Eq. and positivity. This guarantees that zero vectors
in the GNS representation of o»" are mapped to zero vectors in the GNS representations of U;\’"
Using these intertwiners, we then define Alice’s measurement operators as
AN

a

o= (W) Ay W, (12)

By construction, one can directly check statement (i)

pM(abley) = (AN (Byy,)|20)-

alz Tn

Next, we show the above operators satisfy statement (i), i.c., {A%"} C #)(B)’. This relies on

alz

the intertwining property of Wx 'ns Damely
W2t (P) = 10 0 (PYWo, ma (PY (W) = (W) 1y (P)
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The first equality, for example, can be seen from

WA mA(POTA(Pa) | Q)) = Whamh(PiP2) |2)

z,n-n z,n''n
A A
= 7T;L’,n(P1P2) ‘Qz,n>

= (PO A(P2) 2,0 ) = T (POW2,mA(P2) |0)

z,n''n

for any Py, P, € B of arbitrary degrees, and the cyclicity of |Q;§> The second equality can be

checked similarly. Using these intertwining relations and the fact that {flili"} C 7 ,(B)', a direct
computation shows

RITAP) = (W) AN W2, mA(P) = (W2, ) AN 7, (PYW2,

alz "' alx z,nn ale "T,m
A A ANz, A A A AN, A A AN
= (Wx,n)*ﬂm,n(P)Aakf an,n = ﬂ-n(P)(Wm,n)*Aa‘z an,n = 7-‘-n(‘P)Aa|Z

For the positivity claim in statement (i), with any P € B we can check that

(Qylma(P)" - A3 - m (P)|20)

alz
= (ol (P)" (W) - Aye™ - W, ma (P)|20)
= <Qé,n|7r§:\,n(P)* ’ Ai[z’n ’ 7I-;\,7’L(P)|Q;>c\,n> >0

by positivity of Aa)‘én € B(H},).

Finally, statement (7i) is verified by noting that fl;‘é" are POVMs, so

AN * AAzn *
ZA(”I - (Wz)‘\,n) (Z Aa|;p )Wai\,n = (Wz)‘\,n) Wx)\,n

Therefore,
QT (P (W2n) W — Ly ) (P)|23)]
= (2 |72 (P12 (P2)[Q2) — ( Qi (Pr)m (P2) 2]
=[(02" — aM)(PLP2)| < (),
which is bounded by n(A) for Pi, P, € B, where deg(P),deg(P) < n = poly(}). O

With the quantum representation constructed by Theorem the compiled Bell score for Geomp
with QPT strategy .S can be expressed as

w)\(gcompas) = <p>\)g> = <Q$\L‘B(A2|’Z>7T7>;(Bb|y))‘92> (13)

Observe that, in general, wy(Geomp) can be larger than the optimal commuting score wqc(G), since

the prover can potentially use the weak signaling allowed by Eq. to cheat for a higher score.
The goal now is to relate the constructed representation in Theorem to the n-th level

sequential NPA hierarchy Eq. . The gap to Eq. , however, is the signaling effect in Eq. @
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2.4 Signaling/non-signaling decompositions

Following the observation above, it is important to quantify the signaling effect on the compiled Bell
score in order to identify with the sequential NPA hierarchy. Therefore, this section contains the main
technical result (Theorem inspired by the approach in [Ren+17]: using group representation
theory, we are able to identify the parts of A;Z that are no-signaling and signaling, and consequently
bound the advantage of signaling with negligible functions.

We begin with the observation that ), A)“: can be dominated by 1) on the low-degree
subspace upon rescaling. Remark that the identification with a finite NPA level n is crucial to the
following technical lemma.

Lemma 2.6. Consider the quantum representation constructed in Theorem[2.5. Denote by V,, =
span{m(w) [Q) | w € By} the n-degree subspace. Then, there exists an n-dependent negligible
function nE(\) such that

(e (ﬂH% T IV ZA?Z) ) =0 "

a

for any P € B,.

In other words, by rescaling with the dimension of V,,, the operator Lyy— W YA AN

a|x
remains positive semidefinite on the low-degree subspace. Note that dim(V;,) < exp(n) for some
exponential function in n.

Proof. Since there are only finitely many monomials w € B,,, V,, is finite-dimensional, and therefore
there exists a basis {m)(P;)[Q))} associated with a finite set of polynomials {P; € B,}. Let
I1 € B(H)) be the projection to V,.

By Eq. (9), for each P;, P;, it holds that there exists an 7;;(\) such that

(N ma (P (Y Ay = L )m (P20 < mig (M)

a

Define nk(\) := max;; 7;;(\), it follows that
(Sl (P, < ZA — 1) > T (PHIO] < m (V)

for all + and j. That is, for the matrix II(}, A;Z — 1)1 acting on the finite-dimensional space

V,,, we have nZ()\) upper-bounding all the matrix elements, i.e., the max norm

Ty AN = Ty, fmax < 0 (V).

a

Due to the fact that the operator norm is upper-bounded by the Frobenius norm, for any matrix M
on V,, we have

IM5, < IMIIE = > |Miyl* < dim(Vy)?|| M

ij
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Since dim(V;,) < 330 (15| - |[Iy|)¥, we have an operator norm bound

Y AT = 1y, lop < dim (Vi )ngy (V) < exp(n)y (V).

a

Note this norm conversion bound is the tightest general bound; therefore it is not likely to have a
better dependence than dim(V;,) unless better initial bounds are available (e.g., a uniform bound
for all P).

It follows that all eigenvalues of II(}, 1212‘2)1_[ are within the interval [1 — dim(V;,)nk (), 1 +
dim(V,,)n%(\)]. Hence (1y;, — mﬂ(z a A2|Z)H) admits only nonnegative eigenvalues and

consequently is positive semidefinite. We conclude by noting that for every P € B,

0 < (Qmr(P)" <<nvn 1T dim(lvn)nL( T Aiﬁ)ﬂ)) T (P)I2)

a

= (7P <11Hé - 1+dim(1Vn)nTLL()\) ZAQ’Q) T (P)|2).

a

O

The following proposition provides a systematic method for decomposing the measurement opera-
tors A2‘|Z into three parts: a no-signaling component AQ[Z(NS), a signaling component AZ‘[;L(SI), and

a residue component Ai"g(res) that ensures overall physicality (i.e., positivity). This decomposition
is not only central to the discussion in Section but may also offer interesting insights into related
questions, such as the role of signaling effects in quantum steering.

Proposition 2.7. Consider the quantum strategy as constructed in Theorem[2.5 for a QPT strategy
S of a compiled Bell game Geomp with respect to NPA level n. Then, there exists a decomposition

dim(V,,)nf (A) AN (res), (15)

A AAn AN
AL = ALONS) + AT + g s A

alz alz alz

where V;, = span{m(w) [Q)) | w € By} and nk(\) is the same negligible function constructed in
Theorem [2.6, Furthermore,
(i) A;\";L(NS),AQ’Z(SI),A;\’Z(reS) € my(B) C B(H)), i.e., commutativity is preserved with the

| |
decomposition.

(i) For each P € Ba,, there exists n(\) such that |(Q%\A2‘Z(SI)WQ(P)\QQ)| < n(A), i.e., the
contribution from the signaling effect from Alice to Bob is negligible for low-degree polynomials.

(iii) ()| (Pr) (3, AN (NS))mA(P2)| Q) = () (P1) - Ly - ma(P)|Q) for any Pi, Py € By,

alz
i.e., no-signaling on low-degree polynomial subspace.

(iv) (TN (P)* AN (NS)TM (P > 0 for any P € By, i.e., AX"(NS) is positive on the low-

alz alz
degree polynomial subspace.

Observe from (iii) and (iv) that fli"’Z(NS) satisfies POVM conditions but only on the low-degree
polynomial subspace B, .
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Proof. Let us use physical intuition to identify the signaling part of A(’:l: from Alice to Bob. To
Bob, all he can see from Alice is the effect of the marginal AN

alz OF equivalently the average over

the symbol a. Suppose that there is no signaling at all, then to Bob the marginal A2|;L should

be z-label invariant. Consequently, the complement of the z-invariant part of ) Ai‘[g—the part
that is sensitive to any change in x—represents the signaling effect from Alice to Bob. It turns out
the symmetric group and its representation theory are the best for describing our physical intuition,
which we adapt in our proof.
Step 1: Notation of symmetry group representation and Young symmetrizers:

Let the symmetric group 5|7, act on A;‘g by permuting the a index, s : A2|Z — /12(2)‘35 (Note
that they are merely symbolic actions on AS[Z rather than a full action on B(#;).) Denote by 115,
the normalized Young symmetrizer of the tableaux p, and g = 0 for the trivial tableaux, and define

a _ 110
HO - n=0>

Iy =) me.

u#0

Then Hg(le':) is precisely the average over symbols a (i.e., the marginal), while S;,| acts non-
trivially on TI%(A™"), such that TI%(AN™) + I12(AN™) = AN™. Also, they are mutually orthogonal in

alz alz alz alz
the sense that HSH‘f(Ai"Z) = H%HS(A;\"Z) =0.

Analogously, consider the symmetric group S|r,| acting on Ag: by permuting the z index,

5 /12‘” — AN . We similarly denote by I}, the Young symmetrizers and define

|z als(z)”
T _ 17T
0 — n=0>
X __ X
1 — E HM.
u#0

We also have that Hg(fli‘;l) + I (A2|:) = fli‘lz and Hng(AZ‘lZ) = H‘fﬂg(fli‘g) = 0. It is clear from

the definition that the action of IIf commutes with II on A/\’n, so we can unambiguously apply
alz
them jointly.

Step 2: Identifying the signaling contribution

Following from the above remark, the signaling part then corresponds to the marginal of Bob,
i.e., II§, that is purely non-invariant under permutation of z, i.e., IIY. Thus we define the signaling
contribution by

ANM(ST) = TIGIIT (AN, (16)

alz alz

A

which lies in 7

(B)' as it is a linear combination of fl;‘ﬁ
Step 3: Checking (ii) bound on signaling part for low-degrees:

For any nontrivial Young diagram p, the associated Young symmetrizer I}, can be written
as the difference of two equally-sized sums of permutations, each having at most |Ix|!/2 many
terms [Pro07]. Consequently, when applied to ), AN one sees that (Q?L\Hﬁ(za AN (P) Q22

alz? alz/"n
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is the sum of at most |Ix|!/2 many terms as

D RNANT = ANT)mN(P)[) = 03"(P) — 0" (P).

x
a

Thus, for any P € By,

(A7 (SD ()|92>!=|<92\H8H$(AM) A (P)|2)]

alz |

A
LSy (nz zAal;v) P
M#O

< CG!U?’"(P) — " (P)] < n(N),
for some constant Cg depending on the game setting I4,Ix, which can be absorbed into the
negligible function of P.

Step 4: Constructing the no-signaling and the residual part:
It remains to identify AN (NS), the component that appears to be POVM on the low-degree
alz

subspace B,,. One natural choice is the complement of the signaling contribution, i.e.,

A)\,n

o= TSI (A = TIGITE (AT + TIF (AQT).

\ | alx

However, while it satisfies (i), (i), it fails condition (iv) due to the fact that H‘f(fli'z) can be

negative. Therefore, the correct definition is by rescaling H‘ll(fli';) to make it less harmful to the
overall positivity. Thanks to Theorem [2.6, we already have a candidate for the scaling factor and
may define

N 1
ANY(NS) = TIATTE (AN™) + g (AN 17
alfc( )= ol “|x) 1+ dim(Vn)nﬁ(A) i “'“”) 17)
Consequently, the residual part is simply
AN (res) = TIF (AN (18)

alz

so that Eq. holds.
Step 5: Verifying (iii) the low-degree no-signaling:

To this end, observe that 3, TIf (A)") = [L4|TI§TIE (A37) = 0 and 32, TH(A") = [Ta|TT(A7).
So for any Py, P> € B, we have

(N 7N (Py) (Z AN(NS) ) TN (P)|0)
= (| (P) (Z HSHS(/!Q[Z)> o (P2)|20)
_ A i An /\ A
|A||IHI|ZQ! 1) A T (F2)[827)

, A A A A
|IX|Z%|$ (PLPy) = " (PPy) = (Qmh () (Ligy ) mh(Po)I ),
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as desired. Observe that the above calculation also shows that II§1I§ (A)‘|n) is the same as Al I |
in the low-degree subspace, which will be useful for the next step.

Step 6: Checking (iv) positivity on low-degrees:

Note that
) 1
A)"n NS HaHx A)\n 114 A
alx (NS) = oM (A5;) + 7 +dim(Va)nk(\) A
1 )\n AN L )
_ Ay (e AN Mo(Aqfz) )
14 dim(V;,)nk(X) "l ( 0(Aaf) — 1+ dim(Vy)nk (M) ol “'x>>

Hence, it follows from Theorem the positivity of Ai\Z? and the final observation of Step 5 that

(Ol (P)T AL (NS)m (P) )

alz
1

BEER 10N
QA A(P) (H“H%AW

(@A) AN T (P)Y)

1
1+ dim(Vy,)nk(N)

\ A ) mPle)

a

1 1 N
> (OMANPY | L — AN ) 7N P > 0
= ’IA < n‘ﬂ-n( ) < H,>L‘ 1 +d1m(Vn)77,’;“()\) Z( ax)> Trn( )‘ n> =
for every P € B,,. O

2.5 Quantitative characterization of compiled Bell games

The decomposition Theorem [2.7| gives rise to Ag;‘(NS), A2‘|Z(SI), and A;“’Z(res). Let us analyze
each of them individually.

1. First, (i), (iv) of Theorem [2.7|implies that A2|Z(N S) are “almost-POVM” for polynomials
with degree < n, which means that the linear functionals

o) NS(P) = () AN (NS)m) (P)]€))

a\ alx

defined on Ba,, are positive and satisfy the strongly no-signaling condition as defined in [Kul+25].
Consequently, the correlation

A, A,n,NS
NS (abley) = oo™ (Byy,)

is compatible with the n-th level of strongly no-signaling sequential NPA hierarchy. Note the
correlation pgg is generally dependent on n since the functionals e»™NS are

Thus, the corresponding optimal Bell score (associated with the Bell polynomial 5) for
p§§ (ablxy) is upper-bounded by the optimal sequential NPA score at level n:

A An o
wis = (PRg, B) < WeeqnpA (9)-

2. Next, consider the n-dependent pseudo-correlations (due to potential negativity)

e (ablzy) = QAN (ST (Byyy ) |20)-

a|x
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Since there are only finitely many a, b, x, y, Theorem ( i1) then implies that we can find one
negligible function n(A) such that \p’\’"(ab\:cy)\ < n(A) for all a,b, z,y. In particular, it follows
that there exists an upper-bounding neghglble function 72(A), such that for the corresponding
score contribution wg‘I 1= sup n<pSI ,B) we have

A, An 3 AN 3 —
jwgi| < Sklp|<p51",5>| < SEP||ﬁ|||!PSIn|| < |[Bln(A) == n2(A).
Psi PSP

3. Lastly, the norm of the n-dependent pseudo-correlation
PAI (ablay) = (R AN (ves)m (By, ) |2)
is clearly upper-bounded by some constant C'. Then

Bred'| < supl!ﬁHllpres I<c'.
pI‘CS

. o A An 3
Then for its score contribution wi = Sup An <prég B,
res

<C.

’ wres

preb

With the above decomposition, we have already done most of the proof for the following
main result, which upper-bounds the compiled Bell score with the sequential NPA hierarchy value
wieqnpa () and a NPA level dependent negligible function ngn(A).

Theorem 2.8. Let G be a bipartite Bell game. Consider its compiled version Geomp and let
S = (Sa)a be an arbitrary quantum polynomial time (QPT) strategy employed by the prover. Let the
approzimation error of the sequential NPA hierarchy for G be e(n) := wi npa(9) — wqe(G), where
g(n) — 0 monotonically as n — oo.

Then, for every n > 0, there exists a negligible function ng,(\) (dependent on the QHE scheme
and the strategy S) such that

W)\(gcomm S) < WgeqNPA(g> + nS,n(A) = wqc(g> + s(n) + nS,n()\> (19)

for wx(Geomp, S) being the prover’s Bell score using the QPT strategy S. In other words, the Bell
score derived from the QPT strategy S (via NPA level n analysis) is upper-bounded by the optimal
score of the sequential NPA hierarchy at level n plus ng,(X).

Proof. Thanks to the discussion preceding the theorem, we directly compute:
dlm(Vn)nﬁ(A) An _’>
1+ dim(V,)pE () Fres”

dim(Va)re (V) n
1+ dlm(V )nn ()\) p 13<pres ) >

poy A, A,
w)\(gcompa S) < suAp<p’\,ﬁ> < SUAP@NQ +pSIn +
p p

—.

< sup(pNS ) B> + SUP<pSI ,5>

S P&i"
< Witanpa(9) +wgi” + dim (V) (A wied!
< whanpa (G) +m2(A) + C" dim(Vo ) (V)
< Wiegnpa (9) + 15,0 (A) = wae(9) +€(n) + 050 (N),
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where 7s,, := 2max(C’, 1) dim(V,,) max(n%,7n2). Note s, is again negligible and depends on the
QHE scheme and the QPT strategy S as 0, n, both are. O

While Theorem provides upper bounds to the compiled score, it is fundamentally related to
the NPA level n, which influences both the approximation error £(n) and the negligible function
Nsn(A). In general, a practically meaningful upper bounds requires high NPA level n so that the
approximation error £(n) can be small. However, according to Theorem a verifier limited with
poly(A)-sized computer can only compute up to level n = log(\) in the most generality. Moreover,
if Theorem holds, then Theorem implies the existence of a family of Bell games for which the
sequential NPA hierarchy converges arbitrarily slowly, whence the upper bounds by Theorem [2.§]
becomes trivial.

Nonetheless, Theorem draws an equivalence between bipartite Bell games admitting optimal
quantum strategies that are finite-dimensional to the existence of a flat optimal solution of the
sequential NPA hierarchy. This leads to the following corollary, which states that in this finite-
dimensional case, the quantum soundness bound is independent of the NPA level n.

Corollary 2.9. Let G be a bipartite Bell game admitting finite-dimensional optimal quantum
strategies (i.e., in Cy). Consider its compiled version Geomp and let S = (Sx)x be an arbitrary
quantum polynomial time (QPT) strategy employed by the prover.

Then there exists a negligible function n(\) (dependent on the QHE scheme and the strategy S)
such that

WA(gcomp’ S) < Wq(g) +n(A), (20)

where wx(Geomp, S) is the prover’s Bell score using S and wq(G) is the optimal tensor product
quantum score.

Proof. By Theorem there exists some ng > 0 such that the sequential NPA hierarchy has a flat
optimal solution at level ng achieving the optimal game value wy.(G) = wq(G) [SWOS]. It follows
that the approximation error (ng) = 0. Define ng(X\) := ng,,(A) for all A and we are done by
Theorem 2.8

The negligible function 7g(A) can be seen more constructively by recalling the proof of The-
orem Specifically, if the optimal quantum strategy is d-dimensional, this implies that the
n-degree polynomial subspace satisfies dim(V,,) = d. Based on the proof of Theorem we
identify an orthonormal basis {P; ‘Qf‘l>) for P; polynomials of degree < m, ¢ = 1,...,d. Then
ns(A) o< di(X) where 7()) is the negligible function upper-bounding |3, p(ablzy) — >, p(ablz'y)|
and ’Za Ua|x(Pi*Pj) - Za Ga\x’(Pi*F)i>" O

While Theorem is applicable only to games with optimal finite-dimensional strategy and
deciding if a correlation admits a finite-dimensional quantum realization is undecidable [FMS25],
most of the well-studied Bell games are known to satisfy the premise of Theorem Furthermore,
we remark that infinite-dimensional strategy is anyway less well-posed in the computational setup:
it is unclear how to implement such a strategy efficiently with poly()\)-size computers, and even if
possible,; a justification of the correctness of the QHE scheme in the infinite-dimensional setting is
needed.

We end this subsection with two remarks, one on the more general Bell polynomials and one on
the practical limit on the tightness of the bound in Theorem [2.8

Remark 2.10. The derivations above focus on Bell polynomials E that are linear in the correlation
p* for simplicity. However, the same ideas extend readily to cases where the score computation
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involves higher-order terms in p*. In fact, writing

dim(Va)iy (V) s
L+ dim(Va)pE (V) e

A, A,
P =pRS +ps +
one easily verifies that for any k > 1,

A
PP < IpRETF + exp(n)nsn(N),

for some QHE-scheme-QPT-strategy-n-dependent negligible function ng,(X\). This follows because
all cross-terms involve either \pg‘i"] or nsn(A), which are negligible. Similarly, the same argument
extends to any polynomial 8 that is linear in Alice’s measurements while allowing Bob’s measurements
to appear in monomials of degree up to 2n, i.e., the terms of the form

(QAAN" TN (P (By,)) |0,

alz"'n
where P(By),) is a polynomial in Bob’s operators of degree at most 2n.

Remark 2.11. By [NN9/|], given numerical precision, solving an SDP with an N x N moment
matriz requires time polynomial in N. In the n-th level of the NPA hierarchy, the moment matrix
is of size N = dim(V},,), which in the worst scenario is exp(n). Consequently, a verifier limited
to polynomial-time in the security parameter A\ can only feasibly solve the hierarchy up to level
n = log(\). This imposes a practical limit on the tightness of the bound of Theorem a verifier
can certify.

Howewver, if the Bell game possesses significant symmetry (or sparsity) so that the effective size
of the moment matrix is reduced to N = poly(n) = poly(poly(A)) = poly(\), then sequential NPA
hierarchy approximation error can then be computed at a higher precision.

2.6 Discussion on robust self-testing of compiled Bell games

The authors of [Kul+25| also present an exact self-testing of compiled Bell games. We begin by
introducing the notion of commuting operator self-testing following [Pad+24) Definition 7.1], and
then recall the self-testing result.

Definition 2.12. A nonlocal game G with associated Bell polynomial B is called a commuting
operator self-test if any commuting operator strategy that attains the optimal quantum commuting
score, wqc(G), necessarily corresponds to the same ideal state p* on A @max B.

Note that this definition is a proper generalization of the standard self-testing when restricted
to the states on the max tensor product of finite-dimensional C*-algebras [Pad+-24, Theorem 3.5]
up to the extremality condition. But the infinite-dimensional case remains an open question.

Now we are ready to state the exact self-testing result for compiled Bell games [Kul+25,
Theorem 6.5].

Theorem 2.13. Let G be a commuting operator self-test with the ideal state p*. If S is a QPT
strategy for the compiled game Geomp such that imy_,oo Wi (Geomp, S) = wWqc(G), then for the associated
positive linear functional aj‘x it holds that

Jim 0212 (P(Byyy)) = p*(Aaje ©Omax P(Byy))
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for every x,a and every polynomial P. In particular,

. A
Jim o (P(Byjy)) = p"(P(Byy))-
—00
Attempting to generalize all asymptotic results from [Kul+25|, a natural question is whether
we can generalize Theorem to the robust case with our quantitative framework. However, as
we discuss below, the current notions of robust self-testing have limitations that prevent us from

establishing a robust generalization. First, the following remark shows that a robust version of
Theorem [2.12] is likely redundant.

Remark 2.14. In standard robust self-testing [Zha2/|], a necessary condition is that any finite-
dimensional strategy S achieving a Bell score within 6 of the optimal quantum score wy (G) must have
its associated state ps pointwise close to the ideal state p* (with deviation quantified by a function
that vanishes as 6 — 0. One might thus define a Bell game G as k-robust commuting operator
self-test if, for every commuting operator strategy S represented by the state pg, its game score wg

satisfying |ws — wqc(G)| < 6, then there exists a function k(6) (with k(d) — 0 as 6 — 0) such that

lps(P) — p*(P)| < deg(P)r(9),

for every P € A ®max B.

We now argue that this robust notion is redundant. On one hand, if the robust condition
holds, the exact commuting operator self-testing property trivially follows. Conversely, suppose
the game G is an exact self-test but not robust. Let use consider a sequence w, converging to the
optimal commuting score wqc(G) from below. By the fact that the commuting quantum correlation
set Cyc 15 closed, for every n there exists an associated state p, on A ®@max B achieving the score
wn. Then, non-robustness implies that there is some P € A Qmax B and a constant ¢, such that
|on(P) — p*(P)| > ¢ for all n. But the Banach-Alaoglu Theorem [Bla06] implies that there exists
a weak-* convergent subsequence pp, converging to some state p, which by the exact self-testing
property coincides with the ideal state p*. This contradicts the inequality |pn, (P)— p*(P)| > ¢ for all
k. Hence, the robust definition is equivalent to exact commuting operator self-testing Theorem [2.13,

It is important to note that Theorems and applies within the framework of commuting
quantum correlations (so does the standard finite-dimensional self-testing). In our work, however,
compiled Bell games Geomp at security parameter A are characterized using the sequential NPA
hierarchy, which is a relaxation of the commuting quantum model. Consequently, the current
definitions of self-testing are too restrictive to fully capture the behavior of compiled Bell games. This
observation can serve as a motivation to develop a more general notion of robust self-testing capable
of characterizing near-optimal scores even when the underlying correlations lie outside the strictly
commuting set. We note the potential connection to approximate Tsirelson’s theorems [XRK25|,
which characterize the distance of commuting to almost commuting correlations in finite dimensions.

3 The sequential NPA hierarchy

The sequential NPA hierarchy, which we now formally introduce, is the central analytical tool
underpinning our quantitative soundness bounds from Section |2} It provides a natural adaptation of
the standard NPA framework to the setting of sequential Bell games, as depicted in Fig. (b), and
steering scenarios. This hierarchy models a scenario where provers are queried sequentially under a
strong no-signaling condition, which prevents the second prover’s actions from depending on the
first prover’s question.

26



In this formulation, for each a,z we define a subnormalized moment matrix ©( (a|z) for
monomials in the letters {By,} with length < n, and consider the normalized moment matrix
0™ =3 0 (a|z). The corresponding SDP relaxation is given by

w;leqNPA(g) = @<">(C{E§L§ow,z<g’ D)

subject to p(ablzy) = 6(”)(a|x)173b‘y Va,b,x,y (probability extraction),
0< Byy <1 Vb,y (vialocalizing matrices; POVM bounds for Bob),
Z By, =1 Vy (vialocalizing matrices; POVM completeness for Bob),

b
Z 0™ (a|z) = Z 0 (alz’) := 0™ Vz 2’ (strongly no-signaling condition),

1= @gf?% (normalization).
(21)
For every n, this SDP directly corresponds to the compiled Bell game in the asymptotic security
limit (i.e., A — 00), via the identification
7o " (w'0) = 0 afe)u .
It then follows from [Kul+25, Theorem 5.15] that this is a convergent SDP hierarchy to the optimal
commuting quantum score wq(G) from above, as formalized in Theorem
Having defined the hierarchy, we dedicate the remainder of this section to its full characterization.
We compare it with the standard NPA hierarchy (Theorem [3.2)), establish its stopping criterion

(Theorem , and identify its conic dual as a special case of the sparse SOS hierarchy [KMP22]
(Theorem [3.6)).

3.1 Comparison with the standard NPA hierarchy

It is natural to compare the sequential NPA hierarchy defined in Eq. to the standard NPA
hierarchy, which we recall now. Here, the moment matrix '™ is constructed from monomials in the
letters { Az, Byy} of length < n. The associated SDP reads as follows:

wipa(G) = F?i?i‘oﬁ’ p)
(n)

subject to  p(ablry) =T By, Va,b,z,y (probability extraction),
alx> Yy
0< Ayjy; By <1 Va,b,r,y (POVM bounds),

(22)
Z Agle = Z By, =1 Vz,y (POVM completeness),
a b

[Agjes Bejyl =0 Va,b,z,y (commutation),

1= F%Tf])l (normalization).
At level n = 1, it is clear that the sequential NPA hierarchy Eq. and the standard NPA
hierarchy Eq. have a one-to-one correspondence. Moreover, the sequential NPA hierarchy is

asymptotically equivalent to the standard NPA hierarchy: both converge to the optimal commuting
quantum score wqc(G) from above.
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Theorem 3.1. The correlations p(ab|zy) arise from a commuting-observable strategy if and only if
there exists a family of {©M™},, of feasible solutions to Eq. such that p(ablzy) = ") (a\x)LBbm
for all n. Consequently, wgeqNPA(g) Ny wWqc(G) monotonically as n — oo and is asymptotically
equivalent to the standard NPA hierarchy Eq. .

Proof. The standard Banach-Alaoglu type argument shows that the sequential NPA hierarchy
converges to the sequential Bell scenario with strongly no-signaling condition as in Fig. (b) as
n — 0o. We are done by [Kul+25, Theorem 5.15], which shows that the set of commuting-observable
correlations is equivalent to the set of strongly no-signaling sequential quantum correlations. ]

However, for level n > 1, the relationship between the two hierarchies is more nuanced. In fact,

a feasible solution to the standard NPA hierarchy at level n can be mapped to a feasible solution
for the sequential NPA hierarchy at level n — 1 by setting

-1

O (alw)0 =T, .

for all w, v monomials in B,,_1. Therefore, having the assumption on the approximation error on
the sequential NPA hierarchy automatically gives an approximation error on the standard NPA
hierarchy. However, the converse does not hold: at finite levels, the sequential NPA hierarchy is

generally a strict relaxation of the standard NPA hierarchy. As the following proposition shows, at
finite level, it is equivalent to what we call the modified NPA hierarchy.

Proposition 3.2. Consider the modified NPA hierarchy yielding a score wi inpa(G) defined by

WinodnpPA(9) = ff(I}L?;COW ;D)
subject to  p(ablzy) = f‘(ggme‘y Va,b,x,y (probability extraction),

0< Aypz, Byy <1 Va,b,x,y (POVM bounds),
ZBbly =1 Va,y (POVM completeness for Bob),

b
Zfé?,)Aaubz = f‘l()??bQ Vb, € Bp,bo € B—1  (Alice “fakes” POVM properties to Bob),

[Agjes Bopyl =0 Va,b,x,y  (commutation),

1= fgﬁ (normalization).
(23)
Here we have relazed the condition that ), Ay, = 1. That is, A,), seems to be POVMs only from
Bob’s perspective. Note that Eq. is a relaxation of the standard NPA hierarchy in Eq. (22)) at
level n with

wipA(9) < Winoanpa (9);

but is equivalent to the standard NPA hierarchy when n = 1.

Then the exzistence of modified NPA moment matriz T implies the existence of strongly no-
signaling sequential NPA moment matriz ©~1  Conversely, the existence of ©™ also implies the
ezistence of TV That is, for alln > 2,

1 -1
Wieanpa(9) < Whoanpa (9) < winonpa (9)-

Consequently, the modified NPA hierarchy also asymptotically converges to wq.(G). In addition,
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Proof. Clearly, the existence of I'™ implies the existence of @1 by letting

@(n_l) (a|x)w,v = fgfl;alz.v

for all w, v monomials in B,,_1, and note that the weak completeness is already sufficient to “fake”

the strongly no-signaling condition.
For the converse direction, suppose we have ©™ one may identify this with a compiled Bell
game with strongly no-signaling condition via

gl (W) = 0™ (a|z)y, Va,z

o (w*v) = " (w*v) == @u% Va

(24)

as positive linear maps By, — C. We then use the same flat extension technique as in Section
and to obtain positive functionals o, : B — C with 0, = ), 04),. As extensions, the linear
functionals Oqz agree with UZ‘I on the subspace B, _9, so the states o, agree with ¢” on Bg,_2. A
crucial observation is that o, # o,/ in general, in contrast to their behaviors in By, _o.

Then, using Theorem for {0}, we have:

1. A GNS representation (Hy—1,Tp—1, |Qn-1)).
2. The operators {m(By,)} form POVMs in B(H,-1).

3. Positive operators AZ|;1 € mn—1(B)" C B(Hn-1) for all @,z such that
O (a|z)wo = (Qu-1] A7y Tt (W) | Qn1)

for w,v € B,_;. Note that, however, the equation does not hold when w,v € B, \ B,_1

because the flat extension technique affects these entries.
4. The operators fl((;';_l) behave like POV Ms for low-degree polynomials of Bob’s measurements,
i.e., for any P;, P, € B,,_1, one has

alz

( Q|7 (PY" AT 1 )7L (Py) Q1) = 0.

But the above equation does not hold for P, P> of higher degrees, due to the extensions
oz # oy for higher degree polynomials.

One can then identify the letter A, with A and By, with Wn_l(Bbw), and check that the

alz
formula
LY = Qoo vl@0-)
defines a modified moment matrix T L. O

3.2 Stopping criterion for the sequential NPA hierarchy

We now discuss the stopping criterion for the sequential NPA hierarchy. First introduced in Eq. ,
we define more precisely the flatness condition for the sequential NPA hierarchy and then show its
consequences in relation to the finite-dimensional quantum realizations.
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Definition 3.3. Let {0 (a|z)} be the solution of the sequential NPA hierarchy at level n from
Eyq. for a Bell game G. Denote O™ = D O™ (a|z) and consider its block form

(n-1) B
n)_ (©
o= (%5 )

where ©"=1) s the block indexed by monomials of degree < n — 1, and C is the block indexed by
monomials of degree exactly n. Then we say the solution {0 (a|x)} is flat (or has a rank-loop) if

rank(©™) = rank(©" V) < cc.
This leads to our second main theorem.

Theorem 3.4. Let G be a bipartite Bell game with optimal quantum score wyc(G) = wq(G). Its

optimal score wq(G) can be achieved with some finite-dimensional quantum strategy if and only if

there exists a flat optimal solution at some finite level n of the sequential NPA hierarchy.
Furthermore, when these conditions hold, the flat solution {©) (a|z)} at level n yields a finite-

dimensional GNS representation (H,m, |2)) of B with an optimal quantum strategy (Aq,, 7(Byy), [$2)),
which is equivalent to an optimal finite-dimensional tensor product quantum strategy and satisfies:
(i) There exist POVMs {flau}a,x C m(B)' € B(H), where w(B) is the commutant of w(B).

(i) Bob’s measurements in this representation, {m(Byy)}by, are POVMs.

(iii) The probability distribution p(ablzy) = O™ (alz)1,B,, from Eg. is recovered by Born’s
rule in this representation, i.e.,

plablry) = (2| Agem(Byy,)|9)-

(iv) The score of the solution {©™ (a|x)} coincides with the tensor product quantum score, i.e.,
WeeqnPA (9) = wWae(9) = wq(9)-

Proof. The implication that the finite-dimensional optimal quantum strategy leads to a flat solution
of the sequential NPA hierarchy at some level n can be proven with the standard rank vs. the
dimension of the optimal strategy argument, see the proof of [NPAOS, Theorem 10].

For the converse direction, using Eq. l) we identify the moment matrix O™ with a positive
linear functional o™ : By, — C and each ©\")(a|x) with a ¢” : By, — C.

alz
First, we show that every ©™ (alz) is also flat. Since ©(™ is flat, its corresponding functional
0" can be extended to a state ¢ on B via a finite-dimensional GNS representation (#,, |Q2))
(Theorem [2.3). The flatness condition means:

H = span{n(P)|Q) | P € B,} =span{n(P)|Q) | P € B,_1}.

This equality implies that for every monomial w € B, \ B,,—1, we have a linear dependence

m(w) Q)= Y eom(v) |0)

vEBL_1
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for some constants ¢, € C. It follows that for the polynomial P, = w — ZveBn,1 CyV € By,

0 = [[w(Py) I = o (P Py) = o™ (PPu) = Y oni,(PiPu)

for all . Hence ag‘m(PJPw) = 0 for all a,z by positivity. Moreover, the Cauchy-Schwarz inequality
implies that

o(Py) =0"(Py) = O‘g|x(Pw) = Ua|z(Pw) =0.

But the condition ag‘x(P:}Pw) = 0 for the same polynomials P, means that the Gram vectors

corresponding to monomials in B, \ B,_1 for each O (a|z) satisfy the same linear dependence
relations on Gram vectors from B,,_1. That is, all ©( (a|z) are flat in the same block form.

Next, we construct Alice’s operators. Denote by o,, : B — C the flat extension of Uc?la: in the
sense of Section A Following standard arguments (Section and Theorem , we can construct
positive operators A,|, € 7(B)" C B(H) such that for any @ € B and w,v € By:

0012 (Q) = (2A,m(Q)|2) and O (ale) . = (A (w)|Q).

(This equality holds for w,v € B,,, as opposed to B,,_1 in the proof of Theorem precisely because
0 (a|x) have been shown to be flat.) Statements (ii) and (4ii) then straightforwardly follow.

To show that {/lau,} are actually POVMs for each z, it suffices to show that the state o, :=
> Taje 18 equal to o for all z. (We refer to the proofs of Theorems and for this equivalence.)
To this end, it is useful to recall what flat extension from ¢™ to o does exactly: consider the set
of null polynomials P, = w — ZveBn,l cyv for w € By, \ B,—1, generating a two-sided ideal J for
which o(J) = 0. Then, for any @ € B, there exists a low-degree representative @’ € Ba,_o such that
Q@ — Q' € J. The flat extension is then constructed via the equation o(Q) = 0(Q’) = 0™(Q’). (For
example, Q = w,Q" =) 5 v With P, =Q - Q")

On the other hand, each oy, is extended from Uglm using another two-sided ideal J,|,. We have
already shown that O'Z‘x(P;)Pw) =0, hence all P, € J,, and J C J,,, for all a,z. Consequently, if

Q — Q' € J, then Q — Q" €, Jq|5, which implies that
02(Q) =Y 0ae(Q) =D 04a(Q) =D 05, (Q) = 0™(Q) = 0(Q) = 0(Q).

It follows that o, = o for all x since ) € B was arbitrary.

We have now shown that (Aa|m,7r(Bb|y), |2)) is a finite-dimensional quantum strategy with
commuting observables achieving the Bell score wg, npa (G). By definition of the sequential NPA
hierarchy as a relaxation, wg, npa(9) = wqe(G). Conversely, wq(G) is the optimal value over
quantum commuting observable strategies, so wi,npa(9) < wqe(G). This proves statement (iv).
The equivalence to a tensor product quantum strategy then follows from Tsirelson’s theorem for

finite-dimensional commuting strategies (see, e.g., [SWO08; | XRK25|). O

This means that once a flat solution is found, then we can stop the hierarchy with a certified
optimal score. Conversely, note that the sufficiency direction of Theorem is only an existence
statement: having an optimal finite-dimensional strategy does not guarantee the sequential NPA
hierarchy will find a flat optimal solution in practice. In fact, it is possible that there exist infinitely
many inequivalent finite-dimensional optimizers, leading the SDP solver for the sequential NPA
hierarchy to freely return any convex mixtures of them. We further remark that the decision
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problem of whether a correlation admits a finite-dimensional quantum realization is undecidable in
general [FMS25].

Remark 3.5. A feature of the sequential NPA hierarchy Eq. 1s that all constraints are of
degree one, thus it suffices to check flatness over the block © ™=V If adding higher order polynomial
constraints Q({By|y}) of deg(Q) = d to Eq. , the result of Theorem will remain valid if we
change the flatness condition to rank(©™) = rank(©™=9) where =9 is the block indexed by
monomials of degree < n — d.

3.3 Sequential NPA hierarchy is conic dual to sparse SOS hierarchy

Another natural question is to ask what the dual of the sequential NPA hierarchy is, i.e., what is
the corresponding sum of squares (SOS) certificate. It turns out that its conic dual is a special case
of the sparse SOS optimization introduced by [KMP22|, which is asymptotically equivalent to the
standard SOS hierarchy (and hence, conic dual to the standard NPA hierarchy). This conic duality
correspondence provides further characterization of the sequential NPA hierarchy and insights into
its numerical performance from the sparse SOS numerical examples [MW23, Chapter 6.7].

In order to formulate the conic dual of the sequential NPA hierarchy at level n, we first restrict our
attention to the polynomial space generated by the measurement operators A,;, By),. Specifically,
note that the sequential NPA hierarchy at level n characterizes polynomials that are at most of
degree 2n in By, and only linear in A,, (via the matrices ©()(a|z)). Thus, the natural polynomial
vector space is

‘/(n) = {Z Aa|mfa|z(Bb|y) Jrg(‘Bb|y) ‘ fa|cmg € BQn}

a,r

For the duality proof we now assume without loss of generality that the measurement operators
are projective, i.e., Az 2 = Aajas Bay = By),. While this appears stronger than the original POVM
conditions, Theorem below (or, equivalently, by invoking Naimark dilation) guarantees that this
assumption is equivalent for our purposes. In this polynomial space V), the sparse SOS cone at
level n is then defined as

My = {Z (Z Aaje fafe,i + gi) ' (Z Aqjofajei + gz»)
+) p (1 -3 Aa|ac)Q:v

If the Bell polynomial 5 can be identified with an element in V{;,), then the sparse SOS hierarchy

at level n, yielding a score W, .(G), is given by:

fa|x,i7gi7px7 4z € Bn}

wie(@) = max m
P ( ) m, s, {A\abzy}
s.t. 5 —ml =5+ Z )\aba:y <Aa|bi|y - p(ab’$y)>a (25)
a,b,x,y
S € M(n).

We now show that this hierarchy is indeed the conic dual of the sequential NPA hierarchy.
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Proposition 3.6. The sequential NPA hierarchy Eq. and the sparse SOS hierarchy Eq.
are conically dual.

Proof. Define the dual cone of M, as /\/lz/n) = {L : V) — C linear functional | L(M,)) > 0}.
We shall show that every dual feasible solution for the sparse SOS hierarchy corresponds to a feasible
moment solution for the sequential NPA hierarchy, and vice versa.

For the easier direction (SOS = moment), if L € ME/n), then by definition for every SOS

f € M,y we have L(f) > 0. We can identify the entries of the moment matrices, analogous to
Eq. (6), by

O (a|z)w,e = L(w* Agpyv) (26)

and check that they satisfy Eq. .
For the converse (moment = SOS), suppose {©)(a|x)} is a solution of Eq. . Then for
each a, z, define linear functionals L, from 0 (a|z) again with Eq. , and, using the strongly

no-signaling condition, define L =} L,|,. Then the positive semidefiniteness of each 0™ (a|z)
implies that for any f polynomial in By, with degree <mn,

La|z(f*f)7 L(f*f) > 0.

Moreover, under the projective assumption, one can directly compute that for any f, g polynomials
in Bb‘y of degree < n, that

L((Agef +9)" (Agjaf +9)) = L(Ago [ f + Agja 79 + Aazg™ f + 979)
= Lo (f*f+f9+9"f)+ Lg*g)
= Lo ((f +9)"(f +9)) — Lajz(g"9) + L(g%9)
= Lop(F +9)*(f +9) + Y Lajalg’9) > 0,
a'+a
It follows that L is nonnegative on the entire M,); that is, L € /\/lz/n). O

Remark 3.7. There is an equivalent formulation of Eq. such that, while the formulation of the
SDP problem becomes more complicated, the connection to [KMP22] is clearer. Instead, consider a
different sparse SOS cone

M(n) = {Z(Z Aa\:pfa\x,i + gl)*(z Aa\xfa|m,i + gi) | fa\x,hgi € Bn}
i a,x a,x
We then compensate the smaller sparse SOS cone with more Lagrange multipliers Ay, for every

pair of monomials Uy, vy in By,:

wgparse(g) = max m
m,s, {)\abzy}yAuwvw

st. B—ml=s+ Z Aabzy (Aa|biy — p(ab|1:y))
a,b,x,y (27)

YN (11 - ;Aa|$>vx,

T Ugp,Up

s € M), where ug, v, run through all monomials in By,.
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This alternative formulation satisfies the running intersection property in [KMP22] and hence belongs
to a special case of the sparse SOS optimization. Then, it is shown [KMP22] that, asymptotically as
n — 00, this formulation converges to the standard SOS hierarchy, which is dual to the standard
NPA hierarchy. At finite levels, however, there is generally no degree gquarantee as the sparse SOS
certificate generally requires a higher degree than the dense (i.e., usual) SOS hierarchy (analogous to
Theorem |3.2). The numerical analysis of sparse SOS hierarchy vs. dense SOS hierarchy [MW23,
Chapter 6.7] provides insight into the potential numerical performance of the sequential NPA hierarchy
vs. the standard one due to Theorem [3.0.

4 On the necessity of the NPA hierarchy for quantitative quantum
soundness

For bipartite Bell games with finite-dimensional optimal quantum strategies, our Theorem
confirms the quantitative quantum soundness of its compiled version. However, deciding whether a
correlation admits a finite-dimensional quantum realization is undecidable [FMS25|. It is then of
interest to understand if our Theorem can be strengthened to get rid of the finite-dimensionality
assumption.

In particular, Theorem establishes that wy(Geomp, S) < wqe(G) + €(n) + ngn(A) for Bell
games with possibly only infinite-dimensional optimal strategies (e.g., in Cy \ Cy or Cyq \ Cy).
The bound’s tightness depends on two components: a game-specific function £(n) which quantifies
the approximation error of the sequential NPA hierarchy, and an NPA-level-dependent negligible
function ng,(\) derived from the cryptographic security. Having dedicated the previous section to
a full characterization of this sequential NPA hierarchy, a natural question arises: for Bell games
with no finite-dimensional optimal quantum strategy, is the dependence on a game-specific NPA
approximation error £(n), and consequently the NPA-level-dependent negligible function ng,()),
fundamentally necessary? Or, could it be possible to prove a more universal statement of the form
WA (Geomps S) < wqe(G) + nu(A), where 7, () is some negligible function that is universal for all
games G?7

This section explores arguments suggesting that game-specific NPA convergence information
g(n) and ngn(A) may be essential for quantitatively upper-bounding quantum scores for compiled
Bell games based on Theorem

We first show in Section how, for any game G and NPA level n, one can construct explicit
almost-commuting quantum strategies and weakly signaling sequential strategies achieving the score
wl(\lnf), A (G). Then, in Section we use the hardness conjecture MIP®° = coRE (Theorem to
argue for the existence of a family of games G where wiipa (G) is substantially larger than wq(G ™),
leading to the existence of high-scoring strategies S (n) S (n), Ss(gci, SS(;Z} (up to error O(1/ nt/ 4) for
Ss(;i}) Based on the family g(”), we then consider a compiled Bell game Geomp = ( c(gr(ﬁ\p))) y for some
function n = n(\), where for each A the verifier and the prover play the game G\ We argue the
quantum soundness bounds for this Geomp may not be quantitative. We then discuss the significant

challenges in compiling these high-scoring strategies to a QPT strategy (Séér)np) for the family of

compiled games gég‘r(r?g). Overcoming these challenges would prove the claim about the necessity of
NPA approximation errors.

In addition, the line of reasoning in this section is essentially an inversion of Section [2l While
Section [2| first bounded the compiled score by the sequential NPA hierarchy score (effectively
analyzing the robustness of “uncompiling”) and then assumed its rate of convergence to wq.(G),

here we first identify games with NPA hierarchy converging arbitrarily slowly and then explore the
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challenges of compiling the corresponding strategies in a score-preserving way.

4.1 Almost commuting and weakly signaling sequential strategies from NPA
hierarchies

Given a Bell game G and a solution to its n-th level NPA hierarchy, we can construct explicit
quantum strategies that achieve the NPA value wip, (G). These strategies might not satisfy perfect
commutation relations (for standard Bell games) or strong no-signaling (for sequential games), but
their deviations are controlled.

In the proposition below, we propose two constructions. The first, based on |[CV15], gives

strategies S(™ and S§,§Q with almost commutativity controlled by the operator norm. The second
construction is based on the flat extension technique that was already discussed in Section leading

to strategies S and 5*5(22 with almost commutativity controlled in the low-degree polynomial
subspace.

Proposition 4.1. Let G be a Bell game, Gseq be its sequential version, and n € IN. Suppose wiip, (G)
is the optimal value of the n-th level of the standard NPA hierarchy for G. Then:

i) There exists an explicit quantum strategy S™ = (o, { Ay}, { By for G, on a Hilbert space
| ly
H of dimension d (potentially exp(O(n))), achieving score w(G,S™) = wlpa(G) such that

H[Aa\xaBMy]Hop < 0= O(\/lﬁ)

That is, S™ is an almost commuting finite-dimensional quantum strategy, with commutativity
1mproving in operator norm as n increases.

(ii) There exists an explicit sequential quantum strategy SS(Q} = (0ajzs 1 Byly}) for Gseq, on a Hilbert
space H of dimension d (potentially exp(O(n))), achieving score

1 1
Goear SE) € [Repa(9) = O 1), kpa(G) + O ).

It satisfies the weak signaling condition:

|Tr ((Z Oalz — U)P(Bb|y)> | < const(P,G) - N O((m:l(/]jg)),

for any polynomial P(By,) in Bob’s operators and const(P,G) a constant depending on P
and the game G.

(iii) There exists an explicit quantum strategy S = (&, {Aa|x}7 {Bb|y}) for G, on a Hilbert space
H of dimension d (potentially exp(O(n))), achieving score w(S™) = wlps (G) such that

T (6 Aajer By P({Agja} { By })) = 0,
where P is any polynomial in Aa\amébkq for which deg([[lau, Bb‘y]P) < 2n. That is, 8™ is a

finite-dimensional strategy whose operators appear to commute when tested against polynomials
up to a certain degree, a property enforced by the n-th level NPA constraints.
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(iv) There exists an explicit sequential quantum strategy S“S(Q = (Gajas {Bb‘y}) Jor Geeq, on a Hilbert

space H of dimension d (potentially exp(O(n))), achieving score w(Gseq, 55(;2) = wlpa(G). It
satisfies the weak signaling condition:

( ZJG|I Bby)) =0,

for any polynomial P(Bb|y) such that deg(P) < 2n — 2.

Proof. Statement (i) is due to [CV15, Theorem 2|. For statement (7i), one can construct a sequential

strategy SS(Q for Ggeq from S (") From POVMs Aqj, and state o of the strategy S () consider
1/2

its square root Aa|x inducing a post-measured state o, = Al(j Al‘/ 2 This defines the strategy
1/20 Al/?

20 A Bb|y) and score

Ss(;i} with the corresponding correlation is p/(ablzy) = Tr (aa|bi|y) =Tr (A
0(Gseqs SSee):

By |OP89, Lemma 2.1] and the commutator bound from statement (i), we have

H[Aifj’Bbw]Hp (2] Aaje: Bojy [ )ef* = V26 = O

n1/4>

There are two consequences. First, one calculates with trace cyclicity and Hoélder’s inequality for
Schatten norms that

’p(ab|xy)—p’(ab|xy)’:‘Tr<gA1/2 A1/2Bb|y) Tr(gAl/2 Bby 1/2>‘

alz alz alz alx
1/2 1/2 1/2 1
< HO-Aa\/x) 1 H[Aa{:c’BbW] < H[Aa|/:c’Bb|y] < O( 1/4)
op
subsequently the Bell score satisfies
1

[(Guoas SE) = whipa ()] < O(77).

Second, for any polynomial P(By,) in Bob’s operators, with again trace cyclicity and Hélder’s
inequality for Schatten norms, we have

Tr <(O‘ — Z Oajz) P (Byjy) ) |

(04,7 5{57P<Bbyn)‘

< Z H 1/2

< \IA\ - (max of coefficients of P) - deg(P) - (# of terms of P) -3

sz paul|

alz’

deg(P)
< |I4] - (max of coefficients of P) - deg(P) - Z (IIp| Iy )k Vo
k
const(P,G)
const(P, G)

For statement (i), denote by I'" the moment matrix associated with w{p,(G). The GNS
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representation of the flat extension of I'" gives rise to the desired quantum strategy S(™. We omit
the details since this is similar to Section 2.2 )
For statement (7v), the construction for Ss(;i{ from S is analogous with the square root
71/2

operator Aa\x and o, = Al‘/2 A |/ Since [Aa|z, P(Bb|y)] = 0 for any P(Bb|y) of degree < 2n —1,

direct calculation shows that [Q(Aa‘x), P(Bb‘y)] = 0 for any polynomial @ in fla|$. It follows that
[1211/2 P(Bb‘y)] = 0 since fli'/j lies in the C*-algebra generated by flau.

alz’
Hence, the score of 95(22 agrees with wip, (G) because, by cyclicity and low degree commutativity,
that
Tr (Al/2 A1/23b|y) = Tr (0 Ay Byyy)-

a|ac alz

Finally, the same reason implies

( Zga\x Bb\y ) ZTT< a,\xo- a|:ca (Bb|y)]> =0,

for any P(Bb|y) such that deg([[la‘x, P(Bb|y)]/~la|x) < 2n. O

4.2 The challenge of compiling high-scoring strategies for games with slow NPA
convergence

The strategies from Theorem achieve the n-th level NPA score. If we can find games where this
NPA score is significantly higher than the true quantum commuting score wqc(G), these strategies
become candidates for “cheating” strategies that outperform any legitimate commuting quantum
strategy. To argue for the existence of such games, we rely on a standard hardness conjecture from
quantum complexity theory.

Conjecture 4.2. MIP® = coRE (see e.g., [Ji+21]). More precisely, we conjecture that the following
decision problem is coRE-hard:

Given a game G with promise that wy.(G) =1 or wq.(G) < 1/4, decide which case holds.  (28)

This conjecture implies the existence of games where finite levels of the NPA hierarchy significantly
overestimate the true quantum score.

Proposition 4.3. Assume Theorem @ Then for any integer n € IN, there exists a Bell game G
such that its true optimal quantum commuting score satisfies wqc(g(”)) < 1/4, while the n-th level
of the standard NPA hierarchy gives a bound wﬁPA(g(”)) > 3/4. Consequently, there cannot be a
universal computable rate of convergence (k) — 0 for the NPA hierarchy that holds for all games G
and all levels k.

Proof. We prove by contradiction. Assume the negation: there exists some ng such that for all Bell
games G, if wipa (G) > 3/4, then wqc(G) > 1/4.

Now, consider an arbitrary instance G of the decision problem Eq. . Then, due to G fulfilling
the promise of Eq. and the negation of statement (i), we have the following algorithm for

Eq. :

1. Compute wyh, (G) using NPA hierarchy at level ng.
2. If wiha(G) > 3/4, then wee(G) = 1.
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3. Otherwise, one has wqe(G) < wipa(G) < 3/4, which forces that wqy.(G) < 1/4.

This algorithm decides the problem in Eq. , which contradicts its coRE-hardness. Thus, the
sequence of games (G(™), ey must exist. Since the gap between wiitp, (G™) and we.(G™) is > 1/2,
any computable NPA approximation error (k) — 0 would violate the gap once k = n is chosen so
that e(n) < 1/2. O

Therefore, in the case of Theorem [4.2] being false, then our result Theorem [2.9| fully characterizes
the quantitative quantum soundness for all Bell games. Otherwise, Theorem establishes
the existence of a family of Bell games (G™),cn such that for each n, we.(G™) < 1/4 while
whipa (G (n)) > 3/4. For each such game G, Theorem [4.1| provides (uncompiled) strategies, such as

S or S (and their sequential counterparts 55;2, Sb(g(i) that achieve this high score w{{IPA(Q(”))

(up to error of O(1/n'/*) for SS((ZQ)
The central challenge is to compile these high-scoring strategies into a QPT cheating strategy.
This involves defining a relationship n = n(\) (where \ is the security parameter) for which we

construct a compiled Bell game Geomp = (gég‘r@g)) a- That is, for every A the verifier and the prover
play the compiled version of the game G"). Additionally, one needs to compile the high-scoring
strategy S(™(V) (or S ("(A))) for the game G("™) into a QPT strategy Séé‘%lp for the compiled game

gcon?p). The goal is for Sc(g‘%lp to be implementable in polynomial time in A and to achieve a score

(gé&rﬁ} , S((;(’)\I)np) that remains significantly above wqc(g(”()‘))) (ideally, close to 3/4). If such a QPT

strategy Séor)np can be constructed, it would indeed show that without game-specific knowledge of
the NPA approximation error £(n(\)), the verifier’s soundness guarantee (Theorem would be

loose for the Bell game Geomp = (gcomp)) A
However, there are several significant obstacles to such a compilation:

1. Signaling properties and QHE compatibility: The sequential strategies SS(QQ and 5’5(22 ex-
hibit signaling whose nature depends on n = n(\). For Ss(gg, the signaling is bounded by
O(const(P,G)/n(\)'/*4) (Theorem |4.1 .(zz) For n(\) that is not supra-polynomial, this is
non-negligible in A and seems to be in conflict with the QHE security assumptions (Eq. )
Similarly, for S“S(QO}, zero signaling is guaranteed only for polynomials P of degree up to 2n — 2
(Theorem ( iv) and its proof). This is weaker than requiring negligible signaling against
polynomials of arbitrary degrees or at least polynomially large degree in the case of n(\) being
sub-polynomial. These potentially large signaling properties present a direct challenge for
compiling these strategies using existing QHE frameworks, especially under the requirement
of efficient provers as discussed in the next item.

2. Efficiency of the base strategies: The strategies S and S from Theorem [4.1|are constructed
on Hilbert spaces H,H whose dimensions d,d can be exp(O(n)) in the worst case (see
Theorem . On the other hand, the Solovay-Kitaev theorem [DN06, Eq. (23)] implies any
quantum operations acting on H, H can be (up to an arbitrarily small error) approximated by

O(poly(d)) gates. This means that for SC((/)\I)np to form a QPT strategy, its circuit complexity
must be polynomial in . If the underlying strategy S and S(™) has a dimension exponential
in n, the Solovay-Kitaev theorem implies that n must be at most O(log(\)) for the compiled
strategy to remain efficient. This potential constraint of n = O(log())) could, in turn, make
the signaling effects (which scale with n) non-negligible in A, presenting a significant hurdle
for compiling these strategies. However, it is an open possibility that for specific families of
games G (e.g., those with more structure), or through alternative strategy constructions,
efficient QPT implementations might be found even for n = poly(\).
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3. QHE correctness for almost commuting strategies: Standard proofs of QHE correctness for
compiled games (e.g., KLVY [Kal+23|) rely on an assumption of “correctness with auxiliary
input.” This assumption states that QHE evaluation on a register A preserves its entanglement
with an auxiliary register B. This is well-suited for perfectly commuting strategies, which, by
Tsirelson’s theorem, admit a tensor product model H4 ® Hp. However, our strategies S
and S are inherently almost-commuting on a single Hilbert space H (or 7:[) In fact, one
cannot still hope to rely on the original assumption via approximating these strategies by
perfectly commuting strategies using quantitative Tsirelson’s theorems [XRK25|. Indeed, they
are necessarily “far” from any perfectly commuting (tensor product) strategy that achieves a
similar high score, as such a strategy would be bounded by wqc (G < 1/4.

Thus, the standard QHE correctness assumption is not directly applicable and one would
need to formalize and justify a new assumption, perhaps “correctness with auxiliary input
for weakly commuting registers.” This new assumption would need to ensure that QHE
applied to Alice’s (compiled) operations does not unacceptably interfere with Bob’s subsequent
(compiled) operations, despite the lack of perfect commutation or strong no-signaling, while
ensuring the compiled strategy remains efficient.

4. Scaling of game parameters: The games G whose existence is implied by Theorem might
have descriptions (e.g., number of questions or answers) that scale with n. For the overall
protocol of the Bell game Geomp = ( éZ&})) ) to be efficient with respect to A, the description
of G itself must also scale with poly(A). If the complexity of defining G (") grows too rapidly
with n (consequently with A), this could render the compiled game impractical for a QPT
verifier, even if the prover’s strategy for that specific game instance could be implemented
efficiently. This aspect depends on the concrete realization of games G stemming from

potential proof of MIP“® = coRE how n is related to A.

Addressing these obstacles is a significant research challenge. Whether these (or related) high-
scoring, almost-commuting strategies can be successfully compiled into QPT strategies Séé‘%lp for a
family of games like (g<"(*)>) A while preserving their score advantage remains an important open
question. A positive resolution would provide strong evidence for the necessity of game-specific

NPA approximation errors £(n) in quantitative soundness statements for compiled Bell games.
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