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Abstract

Compiling Bell games under cryptographic assumptions replaces the need for physical
separation, allowing nonlocality to be probed with a single untrusted device. While Kalai et al.
(STOC’23) showed that this compilation preserves quantum advantages, its quantitative quantum
soundness has remained an open problem. We address this gap with two primary contributions.
First, we establish the first quantitative quantum soundness bounds for every bipartite compiled
Bell game whose optimal quantum strategy is finite-dimensional: any polynomial-time prover’s
score in the compiled game is negligibly close to the game’s ideal quantum value. More generally,
for all bipartite games we show that the compiled score cannot significantly exceed the bounds
given by a newly formalized convergent sequential Navascués-Pironio-Aćın (NPA) hierarchy.
Second, we provide a full characterization of this sequential NPA hierarchy, establishing it as a
robust numerical tool that is of independent interest. Finally, for games without finite-dimensional
optimal strategies, we explore the necessity of NPA approximation error for quantitatively
bounding their compiled scores, linking these considerations to the complexity conjecture
MIPco = coRE and open challenges such as quantum homomorphic encryption correctness for
“weakly commuting” quantum registers.

1 Introduction

Since Bell’s groundbreaking work [Bel64], understanding and utilizing quantum nonlocality has been
pivotal for both the conceptual foundations and practical applications of quantum theory. A central
tool for probing nonlocality is the study of correlations arising from (nonlocal) Bell games [Bru+14],
wherein multiple provers (also called players) coordinate their responses to questions chosen by a
verifier (also called the referee). Quantum theory famously allows for correlations outside of classical
theories, enabling quantum provers to sometimes achieve higher winning probabilities or “higher
scores” than their classical counterparts.

The standard Bell game setup involves multiple, spatially separated provers who cannot com-
municate during the game, see Fig. 1.(a). This spatial separation is the typical way to enforce
no-signaling constraints on the players or devices. However, verifying spatial separations between
multiple untrusted quantum devices can be practically challenging. Moreover, from a theoretical
standpoint, it is compelling to explore whether the power of quantum nonlocality can be verified
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and utilized using a single (untrusted) quantum device. A naive attempt to adapt a bipartite (Alice
and Bob) Bell game to a single prover is as follows: the single prover receives Alice’s question
x, computes her answer a, they subsequently receive Bob’s question y and compute his answer b.
However, here the prover has full information about Alice’s question (and answer) when deciding
how to answer Bob’s question. This allows for coordination not permitted in the nonlocal case,
and completely undermines the game’s no-communication assumption. To simulate the intended
separation within a single device, the verifier must restrict information flow between the “Alice”
and “Bob” rounds.

Homomorphic encryption (HE) offers a natural solution: the verifier can first encrypt Alice’s
question into Encsk(x) using a secret key sk, and ask the prover to provide an encrypted answer
Encsk(a). In HE the prover does not know the secret key, and therefore never has a decryption of
Encsk(x) in their possession. Nonetheless, the HE satisfies a correctness functionality that enables
the prover to compute an outcome α = Encsk(a) as if they knew x, despite never being given
x in the plain (i.e., never given a decrypted x). The result is that, when Bob goes to make his
computation based on y, it can no longer depend on (x, a) in any meaningful way, as he only has
access to their encryptions (Fig. 1.(c)). However, to allow for quantum strategies, conventional
HE will not suffice, because the player strategies involve quantum computations and entanglement:
the HE of Alice’s part of the strategy should not destroy her pre-shared entangled state with Bob.
Therefore, we require a flavour of “quantum” HE which allows for the homomorphic evaluation of
quantum circuits and satisfies a correctness with respect to auxiliary entangled systems functionality.
Fortunately, constructions of quantum homomorphic encryption (QHE) schemes for polynomial size
quantum circuits, with these additional properties, were established in [Bra18; Mah20], based on
the (post-quantum) security of the learning with errors (LWE) problem. This approach was used by
Kalai et al. [Kal+23], establishing the first compiled Bell games, where a multipartite Bell game can
be transformed into an interactive protocol with a single quantum prover using a QHE scheme, at
the cost of involving a number of rounds proportional to the number of parties. They demonstrated
the classical soundness of such compilation, meaning that a cheating classical prover cannot exceed
the classical score at the standard Bell game. Yet, an important issue was left open by their work:
the quantum soundness, that is whether the compilation preserves the maximal quantum score.

More explicitly, the possibility of a dishonest quantum prover achieving scores for the compiled
Bell game that significantly exceeded what was possible in the spatially separated Bell game was not
ruled out. To date, this issue has been resolved in the negative for a number of cases like XOR and
other simple Bell inequalities [Bar+24; Cui+24; MPW24; NZ23], such as the CHSH game [Cla+69].
For these games, it was shown that no efficient quantum prover could attain a winning probability
negligibly (with respect to the encryption scheme’s security parameter λ) greater than the quantum
value of the original game. Recently, some of us proved quantum soundness of all Bell games in the
asymptotic limit of the security parameter going to infinity [Kul+25]. More precisely, we showed that
for asymptotically large enough security parameter λ, the maximal quantum score at the compiled
and standard Bell games is the same. Yet, this result is not quantitative, as it does not involve an
explicit upper bound on the compiled score for security parameters λ. In particular, it does not
inform a verifier of the security level needed to ensure the quantum provers’ behavior is suitably
nonlocal, making this work unsuitable in practice.

In this work, we obtain quantitative quantum soundness bounds for all bipartite Bell games
with finite-dimensional optimal quantum strategies, generalizing the results from [Bar+24; Cui+24;
Kul+25; MPW24; NZ23]. More precisely, we show that the score a dishonest quantum prover can
achieve at the compiled Bell game can explicitly be upper-bounded by a sequential variant of the
Navascués-Pironio-Aćın (NPA) hierarchy [NPA08; PNA10], which we also fully characterize in this
work. With our result, the verifier can in practice bound the score of the dishonest prover by first
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Figure 1: (a) Standard nonlocal Bell game: A verifier V sends questions x and y to two spatially
separated provers, Alice A and Bob B, who reply with answers a and b. For example, using quantum
theory, the provers may pre-share a quantum state σ to generate better answers. (b) Sequential Bell
game: The verifier V first send question x to Alice and receive her answer a; subsequently, V sends
y to Bob who replies with b. This protocol is said to satisfy the strongly no-signaling condition if
B’s response is independent of A’s question x. In the quantum realization, A first receives a state
σ, measures and produce a post-measured state σa|x, and then forwards it to B, with condition∑

a σa|x =
∑

a σa|x′ for all x, x′. (c) Compiled Bell game: The verifier V interacts with a single
prover P . The verifier first sends an encrypted question Enc(x) and receives an encrypted answer
Enc(a), while the second message pair y and b is transmitted unencrypted. The QHE scheme chosen
by the verifier enforces a form of computational no-signaling.

computing a bound provided by this hierarchy, and then fixing the security parameter accordingly.

1.1 Nonlocal and compiled Bell games

Nonlocal Bell games. In nonlocal Bell games, a verifier interacts with multiple spatially separated
provers, who are unable to communicate during the game. The provers receive questions from and
provide answers to the verifier according to a pre-agreed protocol. The players win or lose based on
a preset rule (see Fig. 1.(a)) determined by a winning function or predicate. The strategies that
the provers adopt can be based on different resources available (e.g., classical or quantum), and
the distinction between these theories is reflected in the corresponding Bell scores. The Bell score
is the maximum winning probability using strategies permitted in a given resource or paradigm.
For a given Bell game G, we write ωqc(G) its optimal commuting quantum score and ωq(G) its
optimal tensor product quantum score1. More typically, the scores are compared in the classical
and quantum cases. For example, in the CHSH game, the best classical Bell score is 0.75, while the
optimal quantum score is ωqc(GCHSH) = ωq(GCHSH) = cos2(π/8) ≈ 0.85. This is often known as a
game exhibiting quantum advantage.

Compiled Bell games. To transform from multi-prover to a setup with a single-prover, the authors
of [Kal+23] introduce compiled Bell games Gcomp, in which the no-communication constraint between
the provers is replaced by a cryptographic one, using a QHE scheme. The QHE scheme used by
the verifier is parameterized by a security parameter λ. For a chosen λ, the scheme is secure
against poly(λ)-runtime attacks from the prover. The verifier in the compiled game Gcomp sends
an encrypted question x and receives the encrypted answer a back from the prover. The verifier
then sends y and receives b (see Fig. 1.(c)). Encryption is not required in the second round because
the information is of no use later in the game. In this setting, the prover’s strategies for the

1While the two are equivalent in finite dimensions, they are not the same in infinite-dimensions, and in fact there is
a Bell game for which the scores are distinct [Ji+21].
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compiled game are characterized by quantum polynomial time (QPT) circuits, denoted S, which
upon obtaining x produce the outcome a. The winning probability of employing strategy S in the
game Gcomp (with security parameter λ) is the compiled Bell score ωλ(Gcomp, S). This compilation
procedure guarantees classical soundness. That is, no dishonest classical prover can exceed the
maximal classical winning probability in the no communication setting. Furthermore, by the features
of the QHE scheme, quantum completeness is also guaranteed. That is, an honest quantum prover
can achieve the optimal quantum score in the nonlocal case [Kal+23].

Establishing quantum soundness of ωλ(Gcomp, S) (i.e., that no dishonest quantum prover can
exceed the maximal quantum score more than some quantitatively negligible function in λ) remains
open. Recently, operator-algebraic techniques [Kul+25] provided qualitative insights into this
quantum compiled value in the asymptotic limit of the security parameter (λ → ∞). Their approach
uses the fact that in the limit, compiled strategies correspond to strategies for sequential Bell
games satisfying the strongly non-signaling property (see Fig. 1.(b)). These quantum strategies for
sequential Bell games turn out to be equivalent to the commuting quantum strategies [HJW93;
Kul+25], and so it follows that as λ → ∞, the scores ωλ(Gcomp, S) achievable by any QPT strategy
S converge to the quantum commuting score ωqc(G).

Yet, this last result is only qualitative: in practice, the verifier can only take finite λ, in which
case [Kul+25] provides no concrete bound on the score ωλ(Gcomp, S) the cheating prover can obtain,
as it does not provide a quantitative bound on how quickly these compiled scores converge for
finite λ. Therefore, the quantitative quantum soundness of all compiled Bell games as proposed
in [Kul+25] remains an open problem. This is the main challenge that our work addresses.

1.2 Main results

Our work has two primary contributions. (i) We give the first quantitative quantum soundness bounds
for every bipartite compiled Bell game whose optimal quantum strategies are finite-dimensional,
showing that the compiled score is provably close to the game’s ideal quantum score. In fact, for
all bipartite compiled Bell games, we obtain upper bounds for the compiled scores in terms of the
sequential NPA hierarchy. (ii) We formalize and fully characterize a sequential variant of the NPA
hierarchy, a tool that underpins our analysis and is of independent interest. In the following, we
give more details.

Quantitative bound for bipartite compiled Bell scores. Let G be any bipartite Bell game and Gcomp

its compiled version. Our first main result upper-bounds the score ωλ
comp(Gcomp, S) achievable

by any QPT strategy S as the ideal commuting-operator score ωqc(G) plus two error terms: an
approximation term ε(n) arising from level n of the sequential NPA hierarchy and a negligible
cryptographic term (from the QHE scheme and the implementation of S). When G admits a
finite-dimensional optimal strategy, the hierarchy has a feasible solution at some finite level n0,
so ε(n0) = 0 and we obtain a negligible gap to the tensor-product quantum value. The precise
statement is as follows.

Theorem A (Theorems 2.8 and 2.9). Consider any bipartite Bell game G with commuting quantum
score ωqc(G). Then, for any QPT strategy S and for every n > 0, its achievable score ωλ(Gcomp, S)
is bounded as

ωλ(Gcomp, S) ≤ ωqc(G) + ε(n) + neglS,n(λ),

where ε(n) := ωn
seqNPA(G)− ωqc(G) is the approximation error from the n-th level of the sequential

NPA hierarchy, which monotonically vanishes as n → ∞. The term neglS,n(λ) is a negligible
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function (dependent on the QHE scheme, strategy S, and level n) that goes to zero faster than the
reciprocal of any polynomial in λ.

Furthermore, if G admits a finite-dimensional optimal quantum strategy (i.e., the optimal
quantum correlations lie in Cq), then

ωλ(Gcomp, S) ≤ ωq(G) + neglS(λ),

where ωq(G) is the optimal tensor product quantum score and neglS(λ) is some negligible function
depending only on the QHE scheme and the strategy S.

Hence, knowing the approximation error of the sequential NPA hierarchy ε(n) for a game G
provides a quantitative upper bound on the maximal score that a dishonest prover can obtain
at the compiled game Gcomp with some QPT strategy S. By letting n, λ → ∞, we recover the
asymptotic quantum soundness result of [Kul+25]. In addition, for all bipartite Bell games with
optimal finite-dimensional strategies, the second inequality establishes the quantitative quantum
soundness of its compiled version, which is a generalization to [Bar+24; Cui+24; MPW24; NZ23].

While the problem of deciding if a correlation admits a finite-dimensional quantum realization is
undecidable in general [FMS25], many of the most studied Bell games are known to have finite-
dimensional optimal strategies. Note also that an infinite-dimensional quantum strategy poses
several issues. First, it is unclear how to implement such a strategy efficiently with polynomial-size
circuits. Second, even if one could engineer such an implementation, compiling it while preserving its
score would require a justification of the correctness of the QHE scheme in the infinite-dimensional
setting.

The sequential Navascués-Pironio-Aćın hierarchy. As a second main result, we formally introduce
and characterize the sequential NPA hierarchy (Section 3), which underpins our quantitative
soundness proof. While its asymptotic convergence to the commuting score (Theorem 3.1) is a
direct consequence of [Kul+25, Theorem 5.15], we provide a concrete definition (Eq. (21)) and a
comprehensive characterization of its properties. One characterization that is crucial to Theorem A
is the following stopping criterion based on the flatness condition (aka. rank-loop, a condition on
solution’s matrix rank indicating a finite-dimensional solution) (see Theorem 3.3):

Theorem B (Theorem 3.4). A bipartite Bell game G admits a finite-dimensional optimal quantum
strategy if and only if there exists a flat optimal solution to the sequential NPA hierarchy for G at
some finite level n.

In addition, we:

1. Establish its precise relationship to the standard NPA hierarchy at any finite level n. In
Theorem 3.2, we prove that the sequential NPA hierarchy is equivalent to a relaxed version of
the standard NPA hierarchy where Alice’s operators only appear to satisfy POVM completeness
from Bob’s perspective (Eq. (23)). This result implies that this relaxed hierarchy also converges
to the quantum commuting score.

2. Identify (via Theorem 3.6) its conic dual with the sparse sum of squares (SOS) hierarchy
(Eq. (25)) [KMP22]. This duality not only provides a complete theoretical picture but also
connects our hierarchy to existing numerical examples [MW23, Chapter 6.7].

1.3 Methods, techniques and further results

Our results rely on a combination of existing tools adapted to the compiled game setting and novel
techniques developed in this work, which may be of independent interest. Key elements include:
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1. Navascués-Pironio-Aćın hierarchy and its generalizations. The standard NPA hierarchy [NPA08;
PNA10] provides a systematic method, based on semidefinite programming (SDP), to com-
pute upper bounds on the commuting quantum score ωqc(G). It involves a sequence of SDP
relaxations indexed by an integer level n, yielding monotonically decreasing upper bounds
ωn
NPA(G) that converge to ωqc(G). It generalizes the Lasserre-Parrilo hierarchy [Las01; Par03]

to non-commutative settings.

As discussed in the previous subsection, to establish our quantitative bound on ωλ(Gcomp, S)
(Theorem A), we consider a sequential generalization of the standard NPA hierarchy, which
we introduce and fully characterize (Section 3).

2. Imperfect finite-dimensional quantum representations via flat extension. To connect finite
levels of the (sequential) NPA hierarchy to concrete quantum representations, we consider the
flat extension method [HKM12], central to the discussion in Sections 2.2 and 2.3, and pivotal
in the proof of Theorem B, Theorems 3.2 and 4.1. Given the moment matrix from a finite level
n solution of the NPA hierarchy, the flat extension technique gives positive linear functionals
and, via the GNS construction, a representation of the associated finite-dimensional quantum
strategy that exactly satisfies all algebraic constraints imposed by that n-th NPA level.

Notably, while these extracted strategies faithfully realize the n-th level NPA model, the
constraints of this finite level are generally weaker than those of an ideal commuting quantum
strategy. For instance, the n-th level NPA hierarchy enforces that certain polynomial expres-
sions involving commutators evaluate to zero, as they would for truly commuting operators.
I.e., Tr

(
ρ[Aa|x, Bb|y]P

)
= 0 for all polynomials P of degrees ≤ 2n− 2. However, it does not,

in general, enforce the operator identity [Aa|x, Bb|y] = 0.

Consequently, the strategies obtained via flat extension from a finite NPA level are “imperfect”
in the sense that Alice’s and Bob’s operators might not strictly commute with each other, even
though all n-th level NPA conditions (including those partial commutativity constraints and
linear constraints like POVMs summing to identity) are met. This technique thus provides
a concrete way to construct operational (albeit imperfect) quantum representations from a
finite level of the NPA hierarchy.

It is worth noting that the authors of [CV15] presented an alternative construction of almost
commuting strategies from the NPA hierarchy. While our flat extension-based method produces
strategies satisfying exact commutation when tested against low-degree polynomials their
approach yields strategies whose commutators are controlled in operator norm, with a bound
scaling as O(1/

√
n) for the n-th NPA level. This is achieved by analyzing the projections

onto low-degree subspaces of the original NPA solution, rather than by constructing a new
representation from a modified moment matrix.

3. Isolating signaling effect using symmetric group representation theory. A key observation
from [Kul+25] is that every QPT strategy of compiled Bell games at security parameter λ
implicitly contains a negligible amount of signaling (permitted by the QHE scheme) from the
protocol’s encrypted part to the unencrypted part with poly(λ)-size circuits.

Therefore, analyzing this weak signaling effect and its impact on the compiled Bell score
is interesting. To this end, inspired by [Ren+17], we utilize representation theory of the
symmetric group to develop a technique for decomposing the operators that do not satisfy
the ideal no-signaling conditions (Theorem 2.7). This method allows us to systematically
decompose these operators into components corresponding to a no-signaling part, a signaling
part, and a residual (positive) term. This decomposition is central to establish our main
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theorem (Theorem A), since it allows us to identify the no-signaling part to the sequential
NPA hierarchy at a fixed level, while the signaling part and the residual term can both be
bounded by the negligible functions from the cryptographic assumption. Observe that, since
this decomposition technique is formulated rather generally, it may also be useful for isolating
and analyzing signaling effects in other quantum protocols.

4. Almost-commuting strategies from computationally hard Bell games. Tsirelson’s theorem [SW08]
shows that the correlations attainable from any finite-dimensional genuinely commuting quan-
tum strategies can be also obtained from tensor product quantum strategies (i.e., those in
Cqa). More recently, the approximate Tsirelson’s theorems [XRK25] investigate the situation
when the finite-dimensional quantum strategy is only approximately commuting and provide
operator norm bounds for quantifying its “distance” to tensor product quantum strategies. We
argue that computational complexity arguments reveal this distance must be non-negligible
for certain hard Bell games.

Specifically, the MIPco = coRE conjecture (see e.g., [Ji+21]), via Theorems 4.1 and 4.3,
implies the existence of coRE-hard games where almost-commuting strategies achieve scores
significantly exceeding ωqc(G). For these almost-commuting strategies, the “distance” to
any Cqa strategy, as per [XRK25], must be non-negligible to avoid contradicting this score
advantage. This implies these strategies generate correlations fundamentally distinct from
Cqa.

This insight is complemented by the established MIP∗ = RE result [Ji+21]. For RE-hard
games, if near-optimal almost-commuting strategies (e.g., from NPA truncation) could be
approximated by Cqa strategies with arbitrarily small error (i.e., negligible “distance”), it
would contradict the known separation between sets Cqa and quantum commuting observable
set Cqc. Thus, for these games too, such almost-commuting strategies must be non-negligibly
distant from any in Cqa.

In both cases, these non-negligible distances highlight that the high-scoring almost-commuting
strategies are fundamentally distinct from any commuting tensor-product strategy.

1.4 Open problems and outlook

Building on our results, several important open questions for future research emerge:

1. Necessity of NPA approximation errors and QHE correctness for almost-commuting strategies:
A key question arising from our work is whether the game-specific NPA approximation error
ε(n) is fundamentally necessary for quantitative quantum soundness to games G without a
finite-dimensional optimal quantum strategy. In Section 4, we explore a potential argument
supporting this necessity.

Our investigation, based on the standard complexity conjecture MIPco = coRE (Theorem 4.2),
suggests the existence of Bell games G(n) for which the n-th level NPA score (and hence also the
sequential NPA score) significantly exceeds the true commuting quantum value (Theorem 4.3),
implying that no universal NPA approximation error can exist for the NPA hierarchy. Notably,
if the conjecture MIPco = coRE is false, then there is a universal NPA approximation error and
our quantitative quantum soundness results applies to all bipartite Bell games. On the other
hand, if the conjecture does hold, we provide constructions for almost-commuting quantum
strategies and weakly-signaling sequential quantum strategies that achieve these high NPA
scores (Theorem 4.1).
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Consequently, it is likely that one can construct a compiled Bell game out of the family (G(n))
and compile the associated high-scoring strategies into a cheating QPT strategies. This would
imply the necessity of the game specific NPA approximation error for quantitative quantum
soundness. However, as we discuss in Section 4.2, several significant obstacles prevent the
straightforward compilation of these high-scoring strategies. These challenges include: (1)
finding potentially more efficient constructions of the high-scoring strategies; (2) determining
the scaling of the game size for the family (G(n)), which depends on the potential proof of
MIPco = coRE; and critically, (3) formulating and justifying a more general QHE assumption
suitable for almost-commuting scenarios, i.e., “correctness with auxiliary input for weakly
commuting registers.” Resolving these challenges is crucial to definitively establish the role of
game-specific NPA approximation errors in quantitative quantum soundness.

2. Separation between sequential and standard NPA hierarchies: We introduced the sequential
NPA hierarchy and showed it is equivalent to the standard NPA hierarchy at finite levels
with relaxed POVM completeness constraints. We also characterized its stopping criteria and
identified conic dual with the sparse SOS hierarchy [KMP22; MW23]. An interesting question is
whether there exist Bell games G for which the sequential NPA hierarchy ωn

seqNPA(G) converges
much slower to ωqc(G) than the standard NPA hierarchy ωn

NPA(G). Finding such explicit
separations (which we conjecture exist considering the numerical analysis on I3322 of the sparse
SOS hierarchy [MW23, Chapter 6.7]) would provide deeper insights into the convergence
properties of these hierarchies and the precise implications of using Arveson’s Radon-Nikodym
derivatives [Arv69, Lemma 1.4.1], see Theorem 2.1, in the sequential formulation.

3. Generalization to robust self-testing for compiled games: Robust self-testing allows charac-
terizing a quantum device based solely on observed correlations, even with experimental
imperfections. While the exact self-testing result of compiled Bell games in the asymptotic
limit of the security parameter is established [Kul+25, Theorem 6.5], the question of whether
one can generalize this to the robust case in the non-asymptotic setup remains open. We
explore into this direction in Section 2.6, and note on the need to extend the notion of robust
self-testing beyond quantum strategies to cover “quasi-quantum” or imperfectly realized
strategies, possibly using results similar to [XRK25].

4. Quantum soundness of multipartite compiled Bell games beyond two parties: Current investiga-
tions into quantum soundness, including our own, have primarily focused on the compilation of
bipartite Bell games. Extending quantitative quantum soundness results to games with three
or more provers is the natural next step, but it presents a significant challenge: it requires a
sophisticated generalization of operator-algebraic tools, namely for Arveson’s Radon-Nikodym
derivatives (Theorem 2.1) [Arv69, Lemma 1.4.1].

In concurrent work, the authors of [Bar+25] address this very issue, establishing asymptotic
quantum soundness for all multipartite games by proving a new chain rule for these derivatives.
Their multipartite framework is complementary to our methods, and we believe merging their
techniques with ours provides a clear path toward a quantitative quantum soundness analysis
for multipartite compiled games.

5. Exploring almost commuting correlations: The almost commuting strategies arising from
coRE-hard games (Theorems 4.1 and 4.3) are necessarily “far” from any finite-dimensional
tensor-product strategies. The behavior of such strategies was characterized from an asymp-
totic perspective by Ozawa [Oza13], who showed that as commutators vanish, the resulting
correlations converge to the commuting set Cqc. More recently, quantitative bounds have
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been developed to measure the distance from an almost-commuting correlation to the sets
Cqa and Cqc [XRK25]. These works provide tools for exploring the structure of the set of
almost commuting correlations. This investigation, in additional to foundational interests,
is also practically motivated since enforcing strict commutation can be challenging due to
experimental limitations.

6. Bigger picture—from space-like separated provers to single compiled provers: A compelling
direction in quantum information involves replacing the requirement of space-like separation
in Bell game-based protocols with computational or cryptographic assumptions on a single
quantum device. Beyond the research on compiled Bell games already discussed, recent
works have also advanced our understanding of nonlocality under computational assump-
tions [Glu+24], as well as applications in self-testing [MV21] and device-independent quantum
key distribution [Met+21] in the single-prover paradigm.

Our work contributes to this broader effort by providing quantitative soundness bounds for
all bipartite compiled Bell games. More fundamentally, the operator algebraic techniques we
employ offer a direct bridge between the “space-like separation world” and the “compiled
single-prover world,” suggesting the potential for a unified mathematical framework. Such a
framework could systematically translate protocols originally designed for spatially separated
parties into equivalent single-prover protocols with cryptographic assumptions, all while
quantitatively preserving their essential properties (such as achievable scores).

1.5 Structure of the paper

The remainder of this paper is organized as follows. In Section 2, we establish quantitative upper
bounds for the quantum scores of compiled Bell games. More specifically, Section 2.1 introduces
compiled Bell games in the context of the sequential NPA hierarchy at level n and the associated
relaxed no-signaling conditions. Section 2.2 details the flat extension technique, crucial for extending
positive linear maps defined on subspaces of operators to positive linear functionals on the full
algebra. Building on this, Section 2.3 constructs a quantum representation for these compiled Bell
games from the extended functionals. A key technical contribution is presented in Section 2.4, where
we develop a method to decompose Alice’s operators into signaling and no-signaling components,
allowing us to bound the signaling advantage. Section 2.5 then combines these elements to present
the main quantitative soundness theorems, relating the compiled game scores to the sequential
NPA hierarchy and the quantum scores. Finally, Section 2.6 briefly discusses potential notions and
challenges for robust self-testing in the context of compiled Bell games.

In Section 3, we formally introduce and analyze the sequential NPA hierarchy (Eq. (21)). In
particular, Section 3.1 compares this hierarchy to the standard NPA hierarchy, particularly at finite
levels where the sequential version is equivalent to the standard NPA hierarchy with a relaxed
POVM completeness condition. In Section 3.2 we fully describe and prove the stopping criteria
of the sequential NPA hierarchy. Finally, Section 3.3 further characterizes the sequential NPA
hierarchy by identifying its conic dual as a special case of the sparse sum of squares (SOS) hierarchy.

Section 4 explores arguments suggesting that game-specific NPA approximation errors are
essential for establishing quantitative quantum soundness in compiled Bell games. Section 4.1 first
details the construction of explicit almost-commuting quantum strategies and their weakly signaling
sequential counterparts, which achieve the n-th level NPA score for any given Bell game G. Then,
Section 4.2 uses the standard hardness conjecture MIPco = coRE (Theorem 4.2) to argue for the
existence of a family of Bell games G(n) where the n-th level NPA score significantly exceeds the
true quantum commuting score. This section proceeds to define a compiled Bell game based on this
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family, Gcomp = (G(n(λ))
comp )λ, and discusses the substantial challenges in compiling the aforementioned

high-scoring strategies into a single QPT strategy (S
(λ)
comp) for this compiled game. Successfully

overcoming these challenges would demonstrate the necessity of incorporating NPA approximation
errors for robust quantitative soundness.

2 Quantitative bounds for the compiled scores with the sequential
NPA hierarchy

This section investigates the relationship between the optimal score of a Bell game G in the standard
commuting quantum model, denoted ωqc(G), and the score achievable by a prover in its compiled
version Gcomp when employing a specific quantum polynomial time (QPT) strategy S. Such a QPT
strategy, S = (Sλ)λ∈N, is understood as a sequence of quantum strategies indexed by the security
parameter λ; each Sλ consists of quantum operations whose complexity (e.g., in the quantum
circuit model) is polynomial in λ. (For a detailed definition of such strategies, we refer to [Kul+25,
Definition 4.3].) We denote by ωλ(Gcomp, S) the score achieved by the prover when using the QPT
strategy S = (Sλ)λ∈N in the compiled game Gcomp.

Our analysis is rooted in the sequential NPA hierarchy (defined in Eq. (21)) for the specific
game G. Let us quantify the gap between the n-th level of the sequential NPA hierarchy and the
optimal commuting quantum score by defining

ε(n) := ωn
seqNPA(G)− ωqc(G) ≥ 0, (1)

such that ε(n) → 0 as n → ∞ due to the asymptotic convergence of the sequential NPA hierarchy.
Our main findings in this section establish two key quantitative bounds. First, we show in

Theorem 2.8 that the score of the compiled game is inherently close to the score predicted by the
sequential NPA hierarchy at the corresponding feasible level:

ωλ(Gcomp, S) ≤ ωn
seqNPA(G) + ηS,n(λ) = ωqc(G) + ε(n) + ηS,n(λ). (2)

Here, ηS,n : N→ R≥0 is a negligible function dependent on the QHE scheme used in the compilation
of Gcomp, the QPT strategy S and the sequential NPA hierarchy level n. (Recall that negligible
means ηS,n goes to zero faster than the reciprocal of any polynomial in λ.) This first bound
highlights that the cryptographic compilation introduces a NPA level dependent negligible error
from the corresponding sequential NPA hierarchy’s prediction. By letting n, λ → ∞, we recover the
qualitative quantum soundness established in [Kul+25].

Combining this with the stopping criterion of the sequential NPA hierarchy established by
Theorem 3.4, we conclude in Theorem 2.9 that for any bipartite Bell games G with finite-dimensional
optimal quantum strategies:

ωλ(Gcomp, S) ≤ ωq(G) + ηS(λ), (3)

where ωq(G) is the optimal (finite-dimensional) quantum value and ηS(λ) a negligible function
depending on the QHE encryption and the QPT strategy S. This is a generalization of [Bar+24;
Cui+24; MPW24; NZ23].

To facilitate the analysis, we introduce in Section 2.1 the parameter n corresponding to the n-th
level of the sequential NPA hierarchy for game G, which is vital to the signaling decomposition
technique (Theorem 2.6 and Theorem 2.7).

The section is organized as follows. Section 2.1 reviews the relevant definitions for compiled
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Bell games in the context of n-th level of the sequential NPA hierarchy. Section 2.2 explains one of
our technical results, which is a key prerequisite in constructing the quantum strategy described
in Section 2.3. In Section 2.4, we present and prove technical results for decomposing Alice’s
measurements into signaling and no-signaling components. This result enables us to bound the
potential signaling effect from the encrypted part of the prover to the unencrypted part, while
associating the no-signaling part with the strongly no-signaling sequential NPA hierarchy at level n.
The technique of bounding weak signaling effects might be interesting beyond the scope of compiled
Bell games. Then, Section 2.5 states the main result (Theorem 2.8) and proves the quantitative
quantum soundness as a corollary (Theorem 2.9). We finish in Section 2.6 with a discussion on
potential notions of robust self-testings for compiled Bell games.

2.1 Compiled Bell games and QPT strategies associated with NPA level n

We begin with a compiled Bell game Gcomp where the verifier selects the security parameter λ, and
considers an arbitrary QPT strategy S = (Sλ)λ with correlations (pλ(ab|xy))λ for input-output
(a, b, x, y) ∈ IA × IB × IX × IY . We may, without loss of generality, assume that pλ(a|x) ̸= 0;
otherwise, we can always remove the trivial pair (a, x).

By the results in [Kul+25], we can interpret the game and QPT strategy as a sequential Bell
game Gseq with a relaxed no-signaling condition (Eq. (5)). In their notation, they consider the
C∗-algebra B generated by Bob’s POVM elements {Bb|y} (for output-input pairs (b, y) ∈ IB × IY ).
Then for the output-input pairs (a, x) ∈ IA × IX , the measurements of the strategy Sλ are captured
by the positive linear functionals

σλ
a|x : B → C,∀a, x, s.t. pλ(ab|xy) = σλ

a|x(Bb|y).

Moreover, the marginalization over a gives the states (i.e., normalized positive linear functionals)
σλ
x : B → C for all x via

σλ
x :=

∑
a

σλ
a|x.

Then, by [Kul+25, Proposition 4.6], for every fixed polynomial P , there exists a negligible function
ηP (λ) such that

|(σλ
x − σλ

x′)(P )| ≤ ηP (λ), (4)

where ηP depends on the specific polynomial P , the QHE scheme, and the QPT strategy S. Note
that this inequality does not imply there is a universal η providing a uniform bound for all P . In
the asymptotic limit of security parameter λ → ∞ (hence η(λ) → 0), one recovers the strongly
no-signaling sequential algebraic strategy [Kul+25, Definition 5.14].

The physical intuition remains relevant: a prover implementing Sλ is, by definition, restricted to
computations (and thus, state preparations and measurements) whose complexity is bounded by
poly(λ). It is therefore natural to analyze Sλ not against arbitrarily complex quantum measurements,
but rather by considering its interaction with observables whose complexity is also bounded. This
motivates our choice to focus our analysis on a specific set of polynomials, namely those relevant to
a particular level of the NPA hierarchy.

More concretely, we fix a parameter n ≤ poly(λ). Instead of the full C∗-algebra B, we restrict
our attention to the 2n-degree subspace B2n = {P ({Bb|y}) | deg(P ) ≤ 2n}. This perspective aligns
naturally with the sequential NPA hierarchy (formally defined in Eq. (21)), where our n corresponds
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to the n-th level of this hierarchy. The identification with the sequential NPA hierarchy at finite
level is precisely what ensures the validity of our signaling decomposition technique (Theorem 2.6
and Theorem 2.7).

In this level n sequential NPA context, we naturally consider the restriction of σλ
a|x to B2n. That

is, for the output-input pairs (a, x) for Alice, the measurements of the strategy Sλ are captured by
the positive linear maps (rather than functionals on the full B)

σλ,n
a|x : B2n → C,∀a, x, s.t. pλ(ab|xy) = σλ,n

a|x (Bb|y).

Similarly, marginalization over a gives normalized linear maps (rather than states) σλ,n
x : B2n → C

for all x, in the sense that

σλ,n
x :=

∑
a

σλ,n
a|x .

It directly follows from Eq. (4), for all P ∈ B2n, we have weakly no-signaling constraints as

|(σλ,n
x − σλ,n

x′ )(P )| ≤ ηP (λ). (5)

2.2 Flat extension to functionals on full algebra

Analogously to [Kul+25], we wish to apply Arveson’s Radon-Nikodym Theorem [Arv69, Lemma 1.4.1],
to obtain a commuting quantum strategy corresponding to pλ(ab|xy). Let us first recall this key
mathematical result.

Proposition 2.1 (Arveson’s Radon-Nikodym derivative). Let ω, ν be positive linear functionals on
a unital C∗-algebra B such that ν ≤ ω, and let (Hω, πω, |Ωω⟩) be the GNS triple of ω. Then there
exists a unique operator T ∈ πω(B)′ such that 0 ≤ T ≤ 1Hω and

ν(P ) = ⟨Ωω|Tπω(P )|Ωω⟩

for all P ∈ B.

Proof. This is a special case of the general completely positive map version of [Arv69, Lemma 1.4.1].

However, one difficulty of directly applying Theorem 2.1 is that the maps σλ,n
a|x from Section 2.1

are, for each (a, x), positive linear maps on the subspace B2n of polynomials in {Bb|y} of degree up

to 2n, rather than functionals on the full C∗-algebra B. We address this by extending each σλ,n
a|x

to a positive linear functional on B using a flat extension technique, similar to that in [HKM12,
Proposition 2.5 & Remark 2.6]. The method is rooted in the following characterization of positive
semidefinite (PSD) block matrices.

Proposition 2.2. Let

Ã =

(
A B
B∗ C

)
be a self-adjoint matrix. Then Ã ⪰ 0 if and only if A ⪰ 0, and there exists some matrix Z with
B = AZ and C ⪰ Z∗AZ. A crucial consequence is that the specific choice C = Z∗AZ makes the
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matrix

Mf =

(
A B
B∗ Z∗AZ

)
PSD, and importantly, rank(Mf ) = rank(A), i.e., Mf is flat over A. The matrix Z can be generally
computed using the (e.g., Moore-Penrose) inverse of A due to range(B) ⊂ range(A).

Proof. See [BKP16, Proposition 1.11] (adapted to complex matrices).

For the construction that follows, we may assume that our initial positive linear maps σλ,n
a|x

are defined on the slightly larger subspace B2n+2, ensuring cleaner notation. For each (a, x), we

associate the map σλ,n
a|x : B2n+2 → C with its corresponding moment (or Hankel) matrix, indexed by

the monomials in the generators {Bb|y}. In particular, for k ≤ n+ 1, denote by Mk(σ
λ,n
a|x ) the k-th

order moment matrix defined by

(Mk(σ
λ,n
a|x ))w,v = σλ,n

a|x (w
∗v) (6)

for monomials w, v ∈ Bk. It is straightforward to check σλ,n
a|x is positive if and only if Mk(σ

λ,n
a|x ) ⪰ 0

for every k ≤ n+ 1.
The (n+ 1)-th order moment matrix, Mn+1(σ

λ,n
a|x ), can then be written in block form:

Mn+1(σ
λ,n
a|x ) =

(
Mn(σ

λ,n
a|x ) B

B∗ C

)
,

where the block B has entries σλ,n
a|x (w

∗v) for monomials w ∈ Bn and v ∈ Bn+1 \ Bn, while C has
entries defined by monomials of degree exactly n+1. Theorem 2.2 then implies that we can construct
a matrix Z such that B = Mn(σ

λ,n
a|x )Z and a new PSD (n+ 1)-th order moment matrix

Mn+1(σ̃
λ,n
a|x ) =

(
Mn(σ

λ,n
a|x ) B

B∗ Z∗Mn(σ
λ,n
a|x )Z

)
⪰ 0.

This moment matrix Mn+1(σ̃
λ,n
a|x ), as suggested by its notation, can be identified with a new

positive linear map σ̃λ,n
a|x : B2n+2 → C via Eq. (6). This new map σ̃λ,n

a|x agrees with the original σλ,n
a|x

on B2n+1 (since the blocks Mn(σ
λ,n
a|x ) and B are preserved) but generally differs on B2n+2 \ B2n+1

due to the modified bottom-right block. Moreover, Mn+1(σ̃
λ,n
a|x ) by construction satisfies the flatness

condition (also called rank-loop condition, cf. [NPA08]),

rank(Mn+1(σ̃
λ,n
a|x )) = rank(Mn(σ

λ,n
a|x )), (7)

which is the key to constructing a finite-dimensional representation as the following.

Proposition 2.3. Given the positive linear map σ̃λ,n
a|x : B2n+2 → C with its (n + 1)-th order flat

moment matrix Mn+1(σ̃
λ,n
a|x ) constructed as above, and letting pλ(a|x) = σλ,n

a|x (1) ̸= 0. Then, there

exists a finite-dimensional GNS representation (Hλ,n
a|x , π

λ,n
a|x ,

∣∣∣Ωλ,n
a|x

〉
) of the C*-algebra B such that:
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(i) The Hilbert space Hλ,n
a|x has dimension rank(Mn(σ

λ,n
a|x )). It is spanned by vectors corresponding

to polynomials up to degree n:

Hλ,n
a|x = span{πλ,n

a|x (P )
∣∣∣Ωλ,n

a|x

〉
| P ∈ Bn}.

Consequently, for any polynomial P ∈ B, there exists P ′ ∈ Bn such that πλ,n
a|x (P )

∣∣∣Ωλ,n
a|x

〉
=

πλ,n
a|x (P

′)
∣∣∣Ωλ,n

a|x

〉
.

(ii) The map σ̃λ,n
a|x (and thus σλ,n

a|x on B2n+1) is recovered by the cyclic vector: for all P ∈ B2n+1,

σλ,n
a|x (P ) = σλ,n

a|x (1) · ⟨Ω
λ,n
a|x |π

λ,n
a|x (P )|Ωλ,n

a|x ⟩.

(iii) The representation preserves the POVM structure of the generators: for each y, the set

{πλ,n
a|x (Bb|y)}b forms a POVM on Hλ,n

a|x (higher order constraints, such as commutativity, are

not necessarily preserved, but this is not required for our current purpose).

Proof. The representation is obtained by applying the standard GNS construction to the normalized
map σ̃λ,n

a|x /p
λ(a|x). The main consideration, differing from the GNS construction for a state on the

full algebra B, is that σ̃λ,n
a|x is initially defined only on B2n+2. This limitation requires extra care to

ensure that the representation operators πλ,n
a|x (X) (defined by left multiplication) are well-defined,

i.e., that they map the GNS Hilbert space Hλ,n
a|x to itself. Thankfully, the flatness condition on the

moment matrix Mn+1(σ̃
λ,n
a|x ) guarantees this well-definedness, effectively through rank and dimension

constraints, allowing πλ,n
a|x to be a *-representation of the whole B. The properties (i)-(iii) then

follow. For detailed arguments, see e.g., [HKM12, Proposition 2.5 & Remark 2.6] or [NPA08,
Theorem 10].

Thus Theorem 2.3 allows us to consistently extend σ̃λ,n
a|x (and thereby the original σλ,n

a|x ) to a
positive linear functional on the entire algebra B via the formula:

σλ,n
a|x : B → C

P 7→ σλ,n
a|x (1) · ⟨Ω

λ,n
a|x |π

λ,n
a|x (P )|Ωλ,n

a|x ⟩.
(8)

Here, and for the rest of this section, we abuse notation by using σλ,n
a|x to refer to this extended

linear functional on B as well.
Finally, we define for each of Alice’s inputs x:

σλ,n
x =

∑
a

σλ,n
a|x : B → C.

These are indeed states on B. Positivity follows from being a sum of positive linear functionals.
Normalization, σλ,n

x (1) = 1, holds because they are extensions of the original σλ,n
x which were

normalized on B2n. Furthermore, since the extension agrees with the original map on B2n+1 (and
thus on B2n), the property from Eq. (5) is preserved: for each P ∈ B2n, there exists a negligible
function ηP (λ), dependent on the QHE scheme and S, such that

|(σλ,n
x − σλ,n

x′ )(P )| ≤ ηP (λ).
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The flat extension procedure can be interpreted physically: for each of Alice’s outcome-input
pairs (a, x), Bob analyzes the correlations σλ,n

a|x restricted to his measurements corresponding to

polynomials up to degree 2n+ 1. He then constructs a minimal (finite-dimensional) quantum model

(Hλ,n
a|x , π

λ,n
a|x ,

∣∣∣Ωλ,n
a|x

〉
) consistent with these observations. This model then allows extrapolation to

define σλ,n
a|x for any polynomial in Bob’s measurements.

We finish the subsection with a remark on the choice of flat extension technique.

Remark 2.4. To extend σλ,n
a|x from B2n (or B2n+2) to B, one might observe that Bk forms an operator

system for any k and be tempted to apply Arveson’s Extension Theorem [Pau02, Theorem 7.5] (or
Krein’s Theorem for functionals [Pau02, Exercise 2.10]) for this purpose. However, these theorems

require σλ,n
a|x to be positive on the C∗-algebraic positive cone intersected with the subspace, i.e., on

B+ ∩ B2n+2. In our setup σλ,n
a|x is a positive linear map on B2n+2, meaning that σλ,n

a|x is positive with

respect to sums-of-squares (SOS) σλ,n
a|x (

∑
i P

∗
i Pi) ≥ 0 for all Pi ∈ Bn+1. The condition, σλ,n

a|x (Q) ≥ 0
for all Q ∈ B+ ∩B2n+1, is generally stronger, since an element Q ∈ B+ ∩B2n+2 might not be a SOS
of polynomials in Bn+1 but of much larger degrees. Therefore, the positivity condition we start with
might be too weak for a direct application of Krein’s or Arveson’s Extension type theorems, leading us
to use the flat extension technique, which guarantees a positive (and state-like after normalization)
extension to the whole algebra B.

2.3 Quantum representation for strategies of compiled Bell games

Having constructed the states σλ,n
x : B → C, which represent an effective description of the prover’s

QPT strategy Sλ when analyzed at the n-th level of the NPA hierarchy, our next goal is to derive
the associated quantum representation. From this representation, we will recover its compiled Bell
score in the game Gcomp, which we denote ωλ(Gcomp, S).

The following proposition details the construction of an appropriate representation.

Proposition 2.5. Let {σλ,n
x =

∑
a σ

λ,n
a|x : B → C}x∈IX be the states derived from the QPT strategy Sλ

at NPA level n, as constructed in Section 2.2. Then there exists a cyclic representation (Hλ
n, π

λ
n,
∣∣Ωλ

n

〉
)

of B such that:

(i) There exist positive operators {Âλ,n
a|x}a,x ⊂ πλ

n(B)′ ⊂ B(Hλ
n), where πλ

n(B)′ is the commutant of

πλ
n(B).

(ii) Bob’s measurements in this representation, {πλ
n(Bb|y)}b,y are POVMs. On the other hand,

Âλ,n
a|x is almost-POVM in the sense that, for any P1, P2 ∈ Bn, there exists an negligible function

η(λ) such that

|⟨Ωλ
n|πλ

n(P1)

(∑
a

Âλ,n
a|x − 1Hλ

n

)
πλ
n(P2)|Ωλ

n⟩| ≤ η(λ). (9)

(iii) The observed correlations are reproduced: for all a, b, x, y,

pλ(ab|xy) = ⟨Ωλ
n|Â

λ,n
a|xπ

λ
n(Bb|y)|Ωλ

n⟩. (10)

Proof. In contrast to the strongly no-signaling scenario in [Kul+25], where a single state σ sufficed
to unambiguously form a commuting quantum strategy for G via GNS construction, our scenario
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has many different states σλ,n
x . As a result, to construct one representation, we must choose a

representative state σλ,n that best captures the behavior of all σλ,n
x . To achieve this, we consider

the average state over all σλ,n
x ,

σλ,n =
1

|IX |
∑
x

σλ,n
x . (11)

The average state is close to every σλ,n
x , i.e., for each polynomial P ∈ B2n, there exists η(λ) such

that

|(σλ,n − σλ,n
x′ )(P )| ≤ 1

|IX |
∑
x

|(σλ,n
x − σλ,n

x′ )(P )| ≤ η(λ).

We now construct the GNS-triple (Hλ
n, π

λ
n,
∣∣Ωλ

n

〉
) for this average state σλ,n. This will be the desired

representation. Clearly Bob’s operators in this representation πλ
n(Bb|y) form POVMs due to the

property of πλ
n.

Let us construct Alice’s operators Âλ,n
a|x acting on Hλ

n . To this end, also consider GNS-triples

(Hλ
x,n, π

λ
x,n,

∣∣Ωλ
x,n

〉
) for each σλ,n

x . Since for each x we have σλ,n
a|x ≤ σλ,n

x , Theorem 2.1 ensures the

existence of POVMs {Âλ,x,n
a|x } ⊂ πλ

x,n(B)′ ⊂ B(Hλ
x,n) such that

pλ(ab|xy) = σλ,n
a|x (Bb|y) = ⟨Ωλ

x,n|Â
λ,x,n
a|x πλ

x,n(Bb|y)|Ωλ
x,n⟩.

The obstacle is that these POVMs {Âλ,x,n
a|x } all act on different Hilbert spaces rather than on Hλ

n .
The remedy is to consider, for each x, an intertwiner map:

W λ
x,n : Hλ

n → Hλ
x,n, π

λ
n(P )

∣∣∣Ωλ
n

〉
7→ πλ

x,n(P )
∣∣∣Ωλ

x,n

〉
,

for arbitrary P ∈ B. The well-definedness of each W λ
x,n is ensured because the null ideal of σλ,n

(i.e., {P ∈ B | σλ,n(P ∗P ) = 0}) coincides with the intersection of the null ideals of all σλ,n
x (i.e.,⋂

x{P ∈ B | σλ,n
x (P ∗P ) = 0}) due to Eq. (11) and positivity. This guarantees that zero vectors

in the GNS representation of σλ,n are mapped to zero vectors in the GNS representations of σλ,n
x .

Using these intertwiners, we then define Alice’s measurement operators as

Âλ,n
a|x = (W λ

x,n)
∗Âλ,x,n

a|x W λ
x,n, (12)

By construction, one can directly check statement (iii)

pλ(ab|xy) = ⟨Ωλ
n|Â

λ,n
a|xπ

λ
n(Bb|y)|Ωλ

n⟩.

Next, we show the above operators satisfy statement (i), i.e., {Âλ,n
a|x} ⊂ πλ

n(B)′. This relies on
the intertwining property of W λ

x,n, namely

W λ
x,nπ

λ
n(P ) = πλ

x,n(P )W λ
x,n, π

λ
n(P )(W λ

x,n)
∗ = (W λ

x,n)
∗πλ

x,n(P ).
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The first equality, for example, can be seen from

W λ
x,nπ

λ
n(P1)π

λ
n(P2)

∣∣∣Ωλ
n

〉
= W λ

x,nπ
λ
n(P1P2)

∣∣∣Ωλ
n

〉
= πλ

x,n(P1P2)
∣∣∣Ωλ

x,n

〉
= πλ

x,n(P1)π
λ
x,n(P2)

∣∣∣Ωλ
x,n

〉
= πλ

x,n(P1)W
λ
x,nπ

λ
n(P2)

∣∣∣Ωλ
n

〉
,

for any P1, P2 ∈ B of arbitrary degrees, and the cyclicity of
∣∣Ωλ

n

〉
. The second equality can be

checked similarly. Using these intertwining relations and the fact that {Âλ,x,n
a|x } ⊂ πλ

x,n(B)′, a direct
computation shows

Âλ,n
a|xπ

λ
n(P ) = (W λ

x,n)
∗Âλ,x,n

a|x W λ
x,nπ

λ
n(P ) = (W λ

x,n)
∗Âλ,x,n

a|x πλ
x,n(P )W λ

x,n

= (W λ
x,n)

∗πλ
x,n(P )Âλ,x,n

a|x W λ
x,n = πλ

n(P )(W λ
x,n)

∗Âλ,x,n
a|x W λ

x,n = πλ
n(P )Âλ,n

a|x .

For the positivity claim in statement (i), with any P ∈ B we can check that

⟨Ωλ
n|πλ

n(P )∗ · Âλ,n
a|x · πλ

n(P )|Ωλ
n⟩

= ⟨Ωλ
n|πλ

n(P )∗(W λ
x,n)

∗ · Âλ,x,n
a|x ·W λ

x,nπ
λ
n(P )|Ωλ

n⟩

= ⟨Ωλ
x,n|πλ

x,n(P )∗ · Âλ,x,n
a|x · πλ

x,n(P )|Ωλ
x,n⟩ ≥ 0

by positivity of Âλ,x,n
a|x ∈ B(Hλ

x,n).

Finally, statement (ii) is verified by noting that Âλ,x,n
a|x are POVMs, so∑

a

Âλ,n
a|x = (W λ

x,n)
∗(
∑
a

Âλ,x,n
a|x )W λ

x,n = (W λ
x,n)

∗W λ
x,n.

Therefore,

|⟨Ωλ
n|πλ

n(P1)((W
λ
x,n)

∗W λ
x,n − 1Hλ

n
)πλ

n(P2)|Ωλ
n⟩|

= |⟨Ωλ
x,n|πλ

x,n(P1)π
λ
x,n(P2)|Ωλ

x,n⟩ − ⟨Ωλ
n|πλ

n(P1)π
λ
n(P2)|Ωλ

n⟩|
= |(σλ,n

x − σλ,n)(P1P2)| ≤ η(λ),

which is bounded by η(λ) for P1, P2 ∈ Bn where deg(P1), deg(P2) ≤ n = poly(λ).

With the quantum representation constructed by Theorem 2.5, the compiled Bell score for Gcomp

with QPT strategy S can be expressed as

ωλ(Gcomp, S) := ⟨pλ, β⃗⟩ = ⟨Ωλ
n|β(Â

λ,n
a|x , π

λ
n(Bb|y))|Ωλ

n⟩. (13)

Observe that, in general, ωλ(Gcomp) can be larger than the optimal commuting score ωqc(G), since
the prover can potentially use the weak signaling allowed by Eq. (4) to cheat for a higher score.

The goal now is to relate the constructed representation in Theorem 2.5 to the n-th level
sequential NPA hierarchy Eq. (21). The gap to Eq. (21), however, is the signaling effect in Eq. (9).
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2.4 Signaling/non-signaling decompositions

Following the observation above, it is important to quantify the signaling effect on the compiled Bell
score in order to identify with the sequential NPA hierarchy. Therefore, this section contains the main
technical result (Theorem 2.7) inspired by the approach in [Ren+17]: using group representation

theory, we are able to identify the parts of Âλ,n
a|x that are no-signaling and signaling, and consequently

bound the advantage of signaling with negligible functions.
We begin with the observation that

∑
a Â

λ,n
a|x can be dominated by 1Hλ

n
on the low-degree

subspace upon rescaling. Remark that the identification with a finite NPA level n is crucial to the
following technical lemma.

Lemma 2.6. Consider the quantum representation constructed in Theorem 2.5. Denote by Vn =
span{πλ

n(w)
∣∣Ωλ

n

〉
| w ∈ Bn} the n-degree subspace. Then, there exists an n-dependent negligible

function ηLn (λ) such that

⟨Ωλ
n|πλ

n(P )∗

(
1Hλ

n
− 1

1 + dim(Vn)ηLn (λ)

∑
a

Âλ,n
a|x

)
πλ
n(P )|Ωλ

n⟩ ≥ 0, (14)

for any P ∈ Bn.
In other words, by rescaling with the dimension of Vn, the operator 1Hλ

n
− 1

1+dim(Vn)ηLn (λ)

∑
a Â

λ,n
a|x

remains positive semidefinite on the low-degree subspace. Note that dim(Vn) ≤ exp(n) for some
exponential function in n.

Proof. Since there are only finitely many monomials w ∈ Bn, Vn is finite-dimensional, and therefore
there exists a basis {πλ

n(Pi)
∣∣Ωλ

n

〉
} associated with a finite set of polynomials {Pi ∈ Bn}. Let

Π ∈ B(Hλ
n) be the projection to Vn.

By Eq. (9), for each Pi, Pj , it holds that there exists an ηij(λ) such that

|⟨Ωλ
n|πλ

n(Pi)(
∑
a

Âλ,n
a|x − 1Hλ

n
)πλ

n(Pj)|Ωλ
n⟩| ≤ ηij(λ).

Define ηLn (λ) := maxij ηij(λ), it follows that

|⟨Ωλ
n|πλ

n(Pi)

(
Π(
∑
a

Âλ,n
a|x − 1Hλ

n
)Π

)
πλ
n(Pj)|Ωλ

n⟩| ≤ ηLn (λ)

for all i and j. That is, for the matrix Π(
∑

a Â
λ,n
a|x − 1Hλ

n
)Π acting on the finite-dimensional space

Vn, we have ηLn (λ) upper-bounding all the matrix elements, i.e., the max norm

∥Π(
∑
a

Âλ,n
a|x )Π− 1Vn)∥max ≤ ηLn (λ).

Due to the fact that the operator norm is upper-bounded by the Frobenius norm, for any matrix M
on Vn we have

∥M∥2op ≤ ∥M∥2F =
∑
ij

|Mij |2 ≤ dim(Vn)
2∥M∥2max.
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Since dim(Vn) ≤
∑n

k=0(|IB| · |IY |)k, we have an operator norm bound

∥Π(
∑
a

Âλ,n
a|x )Π− 1Vn)∥op ≤ dim(Vn)η

L
n (λ) ≤ exp(n)ηLn (λ).

Note this norm conversion bound is the tightest general bound; therefore it is not likely to have a
better dependence than dim(Vn) unless better initial bounds are available (e.g., a uniform bound
for all P ).

It follows that all eigenvalues of Π(
∑

a Â
λ,n
a|x )Π are within the interval [1 − dim(Vn)η

L
n (λ), 1 +

dim(Vn)η
L
n (λ)]. Hence (1Vn − 1

1+dim(Vn)ηLn (λ)
Π(
∑

a Â
λ,n
a|x )Π) admits only nonnegative eigenvalues and

consequently is positive semidefinite. We conclude by noting that for every P ∈ Bn

0 ≤ ⟨Ωλ
n|πλ

n(P )∗

(
(1Vn − 1

1 + dim(Vn)ηLn (λ)
Π(
∑
a

Âλ,n
a|x )Π)

)
πλ
n(P )|Ωλ

n⟩

= ⟨Ωλ
n|πλ

n(P )∗

(
1Hλ

n
− 1

1 + dim(Vn)ηLn (λ)

∑
a

Âλ,n
a|x

)
πλ
n(P )|Ωλ

n⟩.

The following proposition provides a systematic method for decomposing the measurement opera-
tors Âλ,n

a|x into three parts: a no-signaling component Âλ,n
a|x (NS), a signaling component Âλ,n

a|x (SI), and

a residue component Âλ,n
a|x (res) that ensures overall physicality (i.e., positivity). This decomposition

is not only central to the discussion in Section 2.5, but may also offer interesting insights into related
questions, such as the role of signaling effects in quantum steering.

Proposition 2.7. Consider the quantum strategy as constructed in Theorem 2.5 for a QPT strategy
S of a compiled Bell game Gcomp with respect to NPA level n. Then, there exists a decomposition

Âλ,n
a|x = Âλ,n

a|x (NS) + Âλ,n
a|x (SI) +

dim(Vn)η
L
n (λ)

1 + dim(Vn)ηLn (λ)
Âλ,n

a|x (res), (15)

where Vn = span{πλ
n(w)

∣∣Ωλ
n

〉
| w ∈ Bn} and ηLn (λ) is the same negligible function constructed in

Theorem 2.6. Furthermore,

(i) Âλ,n
a|x (NS), Âλ,n

a|x (SI), Â
λ,n
a|x (res) ∈ πλ

n(B)′ ⊂ B(Hλ
n), i.e., commutativity is preserved with the

decomposition.

(ii) For each P ∈ B2n, there exists η(λ) such that |⟨Ωλ
n|Â

λ,n
a|x (SI)π

λ
n(P )|Ωλ

n⟩| ≤ η(λ), i.e., the
contribution from the signaling effect from Alice to Bob is negligible for low-degree polynomials.

(iii) ⟨Ωλ
n|πλ

n(P1)(
∑

a Â
λ,n
a|x (NS))π

λ
n(P2)|Ωλ

n⟩ = ⟨Ωλ
n|πλ

n(P1) · 1Hλ
n
· πλ

n(P2)|Ωλ
n⟩ for any P1, P2 ∈ Bn,

i.e., no-signaling on low-degree polynomial subspace.

(iv) ⟨Ωλ
n|πλ

n(P )∗Âλ,n
a|x (NS)π

λ
n(P )|Ωλ

n⟩ ≥ 0 for any P ∈ Bn, i.e., Â
λ,n
a|x (NS) is positive on the low-

degree polynomial subspace.

Observe from (iii) and (iv) that Âλ,n
a|x (NS) satisfies POVM conditions but only on the low-degree

polynomial subspace Bn.
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Proof. Let us use physical intuition to identify the signaling part of Âλ,n
a|x from Alice to Bob. To

Bob, all he can see from Alice is the effect of the marginal
∑

a Â
λ,n
a|x , or equivalently the average over

the symbol a. Suppose that there is no signaling at all, then to Bob the marginal
∑

a Â
λ,n
a|x should

be x-label invariant. Consequently, the complement of the x-invariant part of
∑

a Â
λ,n
a|x—the part

that is sensitive to any change in x—represents the signaling effect from Alice to Bob. It turns out
the symmetric group and its representation theory are the best for describing our physical intuition,
which we adapt in our proof.

Step 1: Notation of symmetry group representation and Young symmetrizers:

Let the symmetric group S|IA| act on Âλ,n
a|x by permuting the a index, s : Âλ,n

a|x 7→ Âλ,n
s(a)|x. (Note

that they are merely symbolic actions on Âλ,n
a|x rather than a full action on B(Hλ

n).) Denote by Πa
µ

the normalized Young symmetrizer of the tableaux µ, and µ = 0 for the trivial tableaux, and define

Πa
0 = Πa

µ=0,

Πa
1 =

∑
µ̸=0

Πa
µ.

Then Πa
0(Â

λ,n
a|x ) is precisely the average over symbols a (i.e., the marginal), while S|IA| acts non-

trivially on Πa
1(Â

λ,n
a|x ), such that Πa

0(Â
λ,n
a|x ) +Πa

1(Â
λ,n
a|x ) = Âλ,n

a|x . Also, they are mutually orthogonal in

the sense that Πa
0Π

a
1(Â

λ,n
a|x ) = Πa

1Π
a
0(Â

λ,n
a|x ) = 0.

Analogously, consider the symmetric group S|IX | acting on Âλ,n
a|x by permuting the x index,

s : Âλ,n
a|x 7→ Âλ,n

a|s(x). We similarly denote by Πx
µ the Young symmetrizers and define

Πx
0 = Πx

µ=0,

Πx
1 =

∑
µ̸=0

Πx
µ.

We also have that Πx
0(Â

λ,n
a|x ) + Πx

1(Â
λ,n
a|x ) = Âλ,n

a|x and Πx
0Π

x
1(Â

λ,n
a|x ) = Πx

1Π
x
0(Â

λ,n
a|x ) = 0. It is clear from

the definition that the action of Πa
i commutes with Πx

j on Âλ,n
a|x , so we can unambiguously apply

them jointly.

Step 2: Identifying the signaling contribution

Following from the above remark, the signaling part then corresponds to the marginal of Bob,
i.e., Πa

0, that is purely non-invariant under permutation of x, i.e., Πx
1 . Thus we define the signaling

contribution by

Âλ,n
a|x (SI) = Πa

0Π
x
1(Â

λ,n
a|x ), (16)

which lies in πλ
n(B)′ as it is a linear combination of Âλ,n

a|x .

Step 3: Checking (ii) bound on signaling part for low-degrees:

For any nontrivial Young diagram µ, the associated Young symmetrizer Πx
µ can be written

as the difference of two equally-sized sums of permutations, each having at most |IX |!/2 many

terms [Pro07]. Consequently, when applied to
∑

a Â
λ,n
a|x , one sees that ⟨Ωλ

n|Πx
µ(
∑

a Â
λ,n
a|x )π

λ
n(P )|Ωλ

n⟩
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is the sum of at most |IX |!/2 many terms as∑
a

⟨Ωλ
n|(Â

λ,n
a|x − Âλ,n

a|x′)π
λ
n(P )|Ωλ

n⟩ = σλ,n
x (P )− σλ,n

x′ (P ).

Thus, for any P ∈ B2n,

|⟨Ωλ
n|Â

λ,n
a|x (SI)π

λ
n(P )|Ωλ

n⟩| = |⟨Ωλ
n|Πa

0Π
x
1(Â

λ,n
a|x )π

λ
n(P )|Ωλ

n⟩|

= | 1

|IA|
∑
µ̸=0

⟨Ωλ
n|

(
Πx

µ(
∑
a

Âλ,n
a|x )

)
πλ
n(P )|Ωλ

n⟩|

≤ CG|σλ,n
x (P )− σλ,n

x′ (P )| ≤ η(λ),

for some constant CG depending on the game setting IA, IX , which can be absorbed into the
negligible function of P .

Step 4: Constructing the no-signaling and the residual part:

It remains to identify Âλ,n
a|x (NS), the component that appears to be POVM on the low-degree

subspace Bn. One natural choice is the complement of the signaling contribution, i.e.,

Âλ,n
a|x −Πa

0Π
x
1(Â

λ,n
a|x ) = Πa

0Π
x
0(Â

λ,n
a|x ) + Πa

1(Â
λ,n
a|x ).

However, while it satisfies (i), (iii), it fails condition (iv) due to the fact that Πa
1(Â

λ,n
a|x ) can be

negative. Therefore, the correct definition is by rescaling Πa
1(Â

λ,n
a|x ) to make it less harmful to the

overall positivity. Thanks to Theorem 2.6, we already have a candidate for the scaling factor and
may define

Âλ,n
a|x (NS) = Πa

0Π
x
0(Â

λ,n
a|x ) +

1

1 + dim(Vn)ηLn (λ)
Πa

1(Â
λ,n
a|x ). (17)

Consequently, the residual part is simply

Âλ,n
a|x (res) = Πa

1(Â
λ,n
a|x ) (18)

so that Eq. (15) holds.

Step 5: Verifying (iii) the low-degree no-signaling:

To this end, observe that
∑

aΠ
a
1(Â

λ,n
a|x ) = |IA|Πa

0Π
a
1(Â

λ,n
a|x ) = 0 and

∑
aΠ

a
0(Â

λ,n
a|x ) = |IA|Πa

0(Â
λ,n
a|x ).

So for any P1, P2 ∈ Bn we have

⟨Ωλ
n|πλ

n(P1)

(∑
a

Âλ,n
a|x (NS)

)
πλ
n(P2)|Ωλ

n⟩

= ⟨Ωλ
n|πλ

n(P1)

(∑
a

Πa
0Π

x
0(Â

λ,n
a|x )

)
πλ
n(P2)|Ωλ

n⟩

= |IA|
1

|IA||IX |
∑
a,x

⟨Ωλ
n|πλ

n(P1)Â
λ,n
a|xπ

λ
n(P2)|Ωλ

n⟩

=
1

|IX |
∑
a,x

σλ,n
a|x (P1P2) = σλ,n(P1P2) = ⟨Ωλ

n|πλ
n(P1)

(
1Hλ

n

)
πλ
n(P2)|Ωλ

n⟩,
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as desired. Observe that the above calculation also shows that Πa
0Π

x
0(Â

λ,n
a|x ) is the same as 1

|IA|1Hλ
n

in the low-degree subspace, which will be useful for the next step.

Step 6: Checking (iv) positivity on low-degrees:

Note that

Âλ,n
a|x (NS) = Πa

0Π
x
0(Â

λ,n
a|x ) +

1

1 + dim(Vn)ηLn (λ)
Πa

1(Â
λ,n
a|x )

=
1

1 + dim(Vn)ηLn (λ)
Âλ,n

a|x +

(
Πa

0Π
x
0(Â

λ,n
a|x )−

1

1 + dim(Vn)ηLn (λ)
Πa

0(Â
λ,n
a|x )

)
.

Hence, it follows from Theorem 2.6, the positivity of Âλ,n
a|x , and the final observation of Step 5 that

⟨Ωλ
n|πλ

n(P )∗Âλ,n
a|x (NS)π

λ
n(P )|Ωλ

n⟩

=
1

1 + ηLn (λ)
⟨Ωλ

n|πλ
n(P )∗Âλ,n

a|xπ
λ
n(P )|Ωλ

n⟩

+ ⟨Ωλ
n|πλ

n(P )∗
(
Πa

0Π
x
0(Â

λ,n
a|x )−

1

1 + dim(Vn)ηLn (λ)
Πa

0(Â
λ,n
a|x )

)
πλ
n(P )|Ωλ

n⟩

≥ 1

|IA|
⟨Ωλ

n|πλ
n(P )∗

(
1Hλ

n
− 1

1 + dim(Vn)ηLn (λ)

∑
a

(Âλ,n
a|x )

)
πλ
n(P )|Ωλ

n⟩ ≥ 0

for every P ∈ Bn.

2.5 Quantitative characterization of compiled Bell games

The decomposition Theorem 2.7 gives rise to Âλ,n
a|x (NS), Â

λ,n
a|x (SI), and Âλ,n

a|x (res). Let us analyze
each of them individually.

1. First, (iii), (iv) of Theorem 2.7 implies that Âλ,n
a|x (NS) are “almost-POVM” for polynomials

with degree ≤ n, which means that the linear functionals

σλ,n,NS
a|x (P ) = ⟨Ωλ

n|Â
λ,n
a|x (NS)π

λ
n(P )|Ωλ

n⟩

defined on B2n are positive and satisfy the strongly no-signaling condition as defined in [Kul+25].
Consequently, the correlation

pλ,nNS (ab|xy) = σλ,n,NS
a|x (Bb|y)

is compatible with the n-th level of strongly no-signaling sequential NPA hierarchy. Note the
correlation pλ,nNS is generally dependent on n since the functionals σλ,n,NS are.

Thus, the corresponding optimal Bell score (associated with the Bell polynomial β⃗) for

pλ,nNS (ab|xy) is upper-bounded by the optimal sequential NPA score at level n:

ωλ,n
NS := ⟨pλ,nNS , β⃗⟩ ≤ ωn

seqNPA(G).

2. Next, consider the n-dependent pseudo-correlations (due to potential negativity)

pλ,nSI (ab|xy) = ⟨Ωλ
n|Â

λ,n
a|x (SI)π

λ
n(Bb|y)|Ωλ

n⟩.
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Since there are only finitely many a, b, x, y, Theorem 2.7.(ii) then implies that we can find one

negligible function η(λ) such that |pλ,nSI (ab|xy)| ≤ η(λ) for all a, b, x, y. In particular, it follows
that there exists an upper-bounding negligible function η2(λ), such that for the corresponding

score contribution ωλ,n
SI := sup

pλ,nSI
⟨pλ,nSI , β⃗⟩, we have

|ωλ,n
SI | ≤ sup

pλ,nSI

|⟨pλ,nSI , β⃗⟩| ≤ sup
pλ,nSI

∥β⃗∥∥pλ,nSI ∥ ≤ ∥β⃗∥η(λ) := η2(λ).

3. Lastly, the norm of the n-dependent pseudo-correlation

pλ,nres (ab|xy) = ⟨Ωλ
n|Â

λ,n
a|x (res)π

λ
n(Bb|y)|Ωλ

n⟩

is clearly upper-bounded by some constant C. Then

|βλ,n
res | ≤ sup

pλ,nres

∥β⃗∥∥pλ,nres ∥ ≤ C ′.

Then for its score contribution ωλ,n
res := sup

pλ,nres
⟨pλ,nres , β⃗⟩,

|ωλ,n
res | ≤ sup

pλ,nres

∥β⃗∥∥pλ,nres ∥ ≤ C ′.

With the above decomposition, we have already done most of the proof for the following
main result, which upper-bounds the compiled Bell score with the sequential NPA hierarchy value
ωn
seqNPA(G) and a NPA level dependent negligible function ηS,n(λ).

Theorem 2.8. Let G be a bipartite Bell game. Consider its compiled version Gcomp and let
S = (Sλ)λ be an arbitrary quantum polynomial time (QPT) strategy employed by the prover. Let the
approximation error of the sequential NPA hierarchy for G be ε(n) := ωn

seqNPA(G)− ωqc(G), where
ε(n) → 0 monotonically as n → ∞.

Then, for every n > 0, there exists a negligible function ηS,n(λ) (dependent on the QHE scheme
and the strategy S) such that

ωλ(Gcomp, S) ≤ ωn
seqNPA(G) + ηS,n(λ) = ωqc(G) + ε(n) + ηS,n(λ) (19)

for ωλ(Gcomp, S) being the prover’s Bell score using the QPT strategy S. In other words, the Bell
score derived from the QPT strategy S (via NPA level n analysis) is upper-bounded by the optimal
score of the sequential NPA hierarchy at level n plus ηS,n(λ).

Proof. Thanks to the discussion preceding the theorem, we directly compute:

ωλ(Gcomp, S) ≤ sup
pλ

⟨pλ, β⃗⟩ ≤ sup
pλ

⟨pλ,nNS + pλ,nSI +
dim(Vn)η

L
n (λ)

1 + dim(Vn)ηLn (λ)
pλ,nres , β⃗⟩

≤ sup
pλ,nNS

⟨pλ,nNS , β⃗⟩+ sup
pλ,nSI

⟨pλ,nSI , β⃗⟩+ dim(Vn)η
L
n (λ)

1 + dim(Vn)ηLn (λ)
sup
pλ,nres

⟨pλ,nres , β⃗⟩

≤ ωn
seqNPA(G) + ωλ,n

SI + dim(Vn)η
L
n (λ)ω

λ,n
res

≤ ωn
seqNPA(G) + η2(λ) + C ′ dim(Vn)η

L
n (λ)

≤ ωn
seqNPA(G) + ηS,n(λ) = ωqc(G) + ε(n) + ηS,n(λ),
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where ηS,n := 2max(C ′, 1) dim(Vn)max(ηLn , η2). Note ηS,n is again negligible and depends on the
QHE scheme and the QPT strategy S as ηLn , η2 both are.

While Theorem 2.8 provides upper bounds to the compiled score, it is fundamentally related to
the NPA level n, which influences both the approximation error ε(n) and the negligible function
ηS,n(λ). In general, a practically meaningful upper bounds requires high NPA level n so that the
approximation error ε(n) can be small. However, according to Theorem 2.11, a verifier limited with
poly(λ)-sized computer can only compute up to level n = log(λ) in the most generality. Moreover,
if Theorem 4.2 holds, then Theorem 4.3 implies the existence of a family of Bell games for which the
sequential NPA hierarchy converges arbitrarily slowly, whence the upper bounds by Theorem 2.8
becomes trivial.

Nonetheless, Theorem 3.4 draws an equivalence between bipartite Bell games admitting optimal
quantum strategies that are finite-dimensional to the existence of a flat optimal solution of the
sequential NPA hierarchy. This leads to the following corollary, which states that in this finite-
dimensional case, the quantum soundness bound is independent of the NPA level n.

Corollary 2.9. Let G be a bipartite Bell game admitting finite-dimensional optimal quantum
strategies (i.e., in Cq). Consider its compiled version Gcomp and let S = (Sλ)λ be an arbitrary
quantum polynomial time (QPT) strategy employed by the prover.

Then there exists a negligible function η(λ) (dependent on the QHE scheme and the strategy S)
such that

ωλ(Gcomp, S) ≤ ωq(G) + η(λ), (20)

where ωλ(Gcomp, S) is the prover’s Bell score using S and ωq(G) is the optimal tensor product
quantum score.

Proof. By Theorem 3.4, there exists some n0 > 0 such that the sequential NPA hierarchy has a flat
optimal solution at level n0 achieving the optimal game value ωqc(G) = ωq(G) [SW08]. It follows
that the approximation error ε(n0) = 0. Define ηS(λ) := ηS,n0(λ) for all λ and we are done by
Theorem 2.8.

The negligible function ηS(λ) can be seen more constructively by recalling the proof of The-
orem 2.6. Specifically, if the optimal quantum strategy is d-dimensional, this implies that the
n-degree polynomial subspace satisfies dim(Vn) = d. Based on the proof of Theorem 2.6, we
identify an orthonormal basis {Pi

∣∣Ωλ
n

〉
) for Pi polynomials of degree ≤ n, i = 1, . . . , d. Then

ηS(λ) ∝ dη̃(λ) where η̃(λ) is the negligible function upper-bounding |
∑

a p(ab|xy)−
∑

a p(ab|x′y)|
and |

∑
a σa|x(P

∗
i Pj)−

∑
a σa|x′(P ∗

i Pi)|.

While Theorem 2.9 is applicable only to games with optimal finite-dimensional strategy and
deciding if a correlation admits a finite-dimensional quantum realization is undecidable [FMS25],
most of the well-studied Bell games are known to satisfy the premise of Theorem 2.9. Furthermore,
we remark that infinite-dimensional strategy is anyway less well-posed in the computational setup:
it is unclear how to implement such a strategy efficiently with poly(λ)-size computers, and even if
possible, a justification of the correctness of the QHE scheme in the infinite-dimensional setting is
needed.

We end this subsection with two remarks, one on the more general Bell polynomials and one on
the practical limit on the tightness of the bound in Theorem 2.8.

Remark 2.10. The derivations above focus on Bell polynomials β⃗ that are linear in the correlation
pλ for simplicity. However, the same ideas extend readily to cases where the score computation
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involves higher-order terms in pλ. In fact, writing

pλ = pλ,nNS + pλ,nSI +
dim(Vn)η

L
n (λ)

1 + dim(Vn)ηLn (λ)
pλ,nres ,

one easily verifies that for any k ≥ 1,

|pλ|k ≤ |pλ,nNS |
k + exp(n)ηS,n(λ),

for some QHE-scheme-QPT-strategy-n-dependent negligible function ηS,n(λ). This follows because

all cross-terms involve either |pλ,nSI | or ηS,n(λ), which are negligible. Similarly, the same argument
extends to any polynomial β that is linear in Alice’s measurements while allowing Bob’s measurements
to appear in monomials of degree up to 2n, i.e., the terms of the form

⟨Ωλ
n|Â

λ,n
a|xπ

λ
n(P (Bb|y))|Ωλ

n⟩,

where P (Bb|y) is a polynomial in Bob’s operators of degree at most 2n.

Remark 2.11. By [NN94], given numerical precision, solving an SDP with an N ×N moment
matrix requires time polynomial in N . In the n-th level of the NPA hierarchy, the moment matrix
is of size N = dim(Vn), which in the worst scenario is exp(n). Consequently, a verifier limited
to polynomial-time in the security parameter λ can only feasibly solve the hierarchy up to level
n = log(λ). This imposes a practical limit on the tightness of the bound of Theorem 2.8 a verifier
can certify.

However, if the Bell game possesses significant symmetry (or sparsity) so that the effective size
of the moment matrix is reduced to N = poly(n) = poly(poly(λ)) = poly(λ), then sequential NPA
hierarchy approximation error can then be computed at a higher precision.

2.6 Discussion on robust self-testing of compiled Bell games

The authors of [Kul+25] also present an exact self-testing of compiled Bell games. We begin by
introducing the notion of commuting operator self-testing following [Pad+24, Definition 7.1], and
then recall the self-testing result.

Definition 2.12. A nonlocal game G with associated Bell polynomial β is called a commuting
operator self-test if any commuting operator strategy that attains the optimal quantum commuting
score, ωqc(G), necessarily corresponds to the same ideal state ρ∗ on A⊗max B.

Note that this definition is a proper generalization of the standard self-testing when restricted
to the states on the max tensor product of finite-dimensional C∗-algebras [Pad+24, Theorem 3.5]
up to the extremality condition. But the infinite-dimensional case remains an open question.

Now we are ready to state the exact self-testing result for compiled Bell games [Kul+25,
Theorem 6.5].

Theorem 2.13. Let G be a commuting operator self-test with the ideal state ρ∗. If S is a QPT
strategy for the compiled game Gcomp such that limλ→∞ ωλ(Gcomp, S) = ωqc(G), then for the associated
positive linear functional σλ

a|x it holds that

lim
λ→∞

σλ
a|x(P (Bb|y)) = ρ∗(Aa|x ⊗max P (Bb|y))
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for every x, a and every polynomial P . In particular,

lim
λ→∞

σλ
x(P (Bb|y)) = ρ∗(P (Bb|y)).

Attempting to generalize all asymptotic results from [Kul+25], a natural question is whether
we can generalize Theorem 2.13 to the robust case with our quantitative framework. However, as
we discuss below, the current notions of robust self-testing have limitations that prevent us from
establishing a robust generalization. First, the following remark shows that a robust version of
Theorem 2.12 is likely redundant.

Remark 2.14. In standard robust self-testing [Zha24], a necessary condition is that any finite-
dimensional strategy S achieving a Bell score within δ of the optimal quantum score ω∗

q (G) must have
its associated state ρS pointwise close to the ideal state ρ∗ (with deviation quantified by a function
that vanishes as δ → 0. One might thus define a Bell game G as κ-robust commuting operator
self-test if, for every commuting operator strategy S represented by the state ρS, its game score ωS

satisfying |ωS − ωqc(G)| ≤ δ, then there exists a function κ(δ) (with κ(δ) → 0 as δ → 0) such that

|ρS(P )− ρ∗(P )| ≤ deg(P )κ(δ),

for every P ∈ A⊗max B.
We now argue that this robust notion is redundant. On one hand, if the robust condition

holds, the exact commuting operator self-testing property trivially follows. Conversely, suppose
the game G is an exact self-test but not robust. Let use consider a sequence ωn converging to the
optimal commuting score ωqc(G) from below. By the fact that the commuting quantum correlation
set Cqc is closed, for every n there exists an associated state ρn on A⊗max B achieving the score
ωn. Then, non-robustness implies that there is some P ∈ A ⊗max B and a constant c, such that
|ρn(P )− ρ∗(P )| ≥ c for all n. But the Banach-Alaoglu Theorem [Bla06] implies that there exists
a weak-∗ convergent subsequence ρnk

converging to some state ρ, which by the exact self-testing
property coincides with the ideal state ρ∗. This contradicts the inequality |ρnk

(P )−ρ∗(P )| ≥ c for all
k. Hence, the robust definition is equivalent to exact commuting operator self-testing Theorem 2.12.

It is important to note that Theorems 2.12 and 2.13 applies within the framework of commuting
quantum correlations (so does the standard finite-dimensional self-testing). In our work, however,
compiled Bell games Gcomp at security parameter λ are characterized using the sequential NPA
hierarchy, which is a relaxation of the commuting quantum model. Consequently, the current
definitions of self-testing are too restrictive to fully capture the behavior of compiled Bell games. This
observation can serve as a motivation to develop a more general notion of robust self-testing capable
of characterizing near-optimal scores even when the underlying correlations lie outside the strictly
commuting set. We note the potential connection to approximate Tsirelson’s theorems [XRK25],
which characterize the distance of commuting to almost commuting correlations in finite dimensions.

3 The sequential NPA hierarchy

The sequential NPA hierarchy, which we now formally introduce, is the central analytical tool
underpinning our quantitative soundness bounds from Section 2. It provides a natural adaptation of
the standard NPA framework to the setting of sequential Bell games, as depicted in Fig. 1.(b), and
steering scenarios. This hierarchy models a scenario where provers are queried sequentially under a
strong no-signaling condition, which prevents the second prover’s actions from depending on the
first prover’s question.
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In this formulation, for each a, x we define a subnormalized moment matrix Θ(n)(a|x) for
monomials in the letters {Bb|y} with length ≤ n, and consider the normalized moment matrix

Θ(n) =
∑

aΘ
(n)(a|x). The corresponding SDP relaxation is given by

ωn
seqNPA(G) = max

Θ(n)(a|x)≥0∀a,x
⟨β⃗, p⟩

subject to p(ab|xy) = Θ(n)(a|x)1,Bb|y ∀a, b, x, y (probability extraction),

0 ≤ Bb|y ≤ 1 ∀b, y (via localizing matrices; POVM bounds for Bob),∑
b

Bb|y = 1 ∀y (via localizing matrices; POVM completeness for Bob),∑
a

Θ(n)(a|x) =
∑
a

Θ(n)(a|x′) := Θ(n) ∀x, x′ (strongly no-signaling condition),

1 = Θ
(n)
1,1 (normalization).

(21)
For every n, this SDP directly corresponds to the compiled Bell game in the asymptotic security
limit (i.e., λ → ∞), via the identification

σλ→∞,n
a|x (w∗v) = Θ(n)(a|x)w,v.

It then follows from [Kul+25, Theorem 5.15] that this is a convergent SDP hierarchy to the optimal
commuting quantum score ωqc(G) from above, as formalized in Theorem 3.1.

Having defined the hierarchy, we dedicate the remainder of this section to its full characterization.
We compare it with the standard NPA hierarchy (Theorem 3.2), establish its stopping criterion
(Theorem 3.4), and identify its conic dual as a special case of the sparse SOS hierarchy [KMP22]
(Theorem 3.6).

3.1 Comparison with the standard NPA hierarchy

It is natural to compare the sequential NPA hierarchy defined in Eq. (21) to the standard NPA
hierarchy, which we recall now. Here, the moment matrix Γ(n) is constructed from monomials in the
letters {Aa|x, Bb|y} of length ≤ n. The associated SDP reads as follows:

ωn
NPA(G) = max

Γ(n)≥0
⟨β⃗, p⟩

subject to p(ab|xy) = Γ
(n)
Aa|x,Bb|y

∀a, b, x, y (probability extraction),

0 ≤ Aa|x, Bb|y ≤ 1 ∀a, b, x, y (POVM bounds),∑
a

Aa|x =
∑
b

Bb|y = 1 ∀x, y (POVM completeness),

[Aa|x, Bb|y] = 0 ∀a, b, x, y (commutation),

1 = Γ
(n)
1,1 (normalization).

(22)

At level n = 1, it is clear that the sequential NPA hierarchy Eq. (21) and the standard NPA
hierarchy Eq. (22) have a one-to-one correspondence. Moreover, the sequential NPA hierarchy is
asymptotically equivalent to the standard NPA hierarchy: both converge to the optimal commuting
quantum score ωqc(G) from above.
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Theorem 3.1. The correlations p(ab|xy) arise from a commuting-observable strategy if and only if
there exists a family of {Θ(n)}n of feasible solutions to Eq. (21) such that p(ab|xy) = Θ(n)(a|x)1,Bb|y
for all n. Consequently, ωn

seqNPA(G) ↘ ωqc(G) monotonically as n → ∞ and is asymptotically
equivalent to the standard NPA hierarchy Eq. (22).

Proof. The standard Banach-Alaoglu type argument shows that the sequential NPA hierarchy
converges to the sequential Bell scenario with strongly no-signaling condition as in Fig. 1(b) as
n → ∞. We are done by [Kul+25, Theorem 5.15], which shows that the set of commuting-observable
correlations is equivalent to the set of strongly no-signaling sequential quantum correlations.

However, for level n > 1, the relationship between the two hierarchies is more nuanced. In fact,
a feasible solution to the standard NPA hierarchy at level n can be mapped to a feasible solution
for the sequential NPA hierarchy at level n− 1 by setting

Θ(n−1)(a|x)w,v = Γ
(n)
w,Aa|x·v

for all w, v monomials in Bn−1. Therefore, having the assumption on the approximation error on
the sequential NPA hierarchy automatically gives an approximation error on the standard NPA
hierarchy. However, the converse does not hold: at finite levels, the sequential NPA hierarchy is
generally a strict relaxation of the standard NPA hierarchy. As the following proposition shows, at
finite level, it is equivalent to what we call the modified NPA hierarchy.

Proposition 3.2. Consider the modified NPA hierarchy yielding a score ωn
modNPA(G) defined by

ωn
modNPA(G) = max

Γ̃(n)≥0
⟨β⃗, p⟩

subject to p(ab|xy) = Γ̃
(n)
Aa|x,Bb|y

∀a, b, x, y (probability extraction),

0 ≤ Aa|x, Bb|y ≤ 1 ∀a, b, x, y (POVM bounds),∑
b

Bb|y = 1 ∀x, y (POVM completeness for Bob),∑
a

Γ̃
(n)
b1,Aa|xb2

= Γ̃
(n)
b1,b2

∀b1 ∈ Bn, b2 ∈ Bn−1 (Alice “fakes” POVM properties to Bob),

[Aa|x, Bb|y] = 0 ∀a, b, x, y (commutation),

1 = Γ̃
(n)
1,1 (normalization).

(23)
Here we have relaxed the condition that

∑
aAa|x = 1. That is, Aa|x seems to be POVMs only from

Bob’s perspective. Note that Eq. (23) is a relaxation of the standard NPA hierarchy in Eq. (22) at
level n with

ωn
NPA(G) ≤ ωn

modNPA(G),

but is equivalent to the standard NPA hierarchy when n = 1.
Then the existence of modified NPA moment matrix Γ̃(n) implies the existence of strongly no-

signaling sequential NPA moment matrix Θ(n−1). Conversely, the existence of Θ(n) also implies the
existence of Γ̃(n−1). That is, for all n ≥ 2,

ωn+1
seqNPA(G) ≤ ωn

modNPA(G) ≤ ωn−1
seqNPA(G).

Consequently, the modified NPA hierarchy also asymptotically converges to ωqc(G). In addition,
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Proof. Clearly, the existence of Γ̃(n) implies the existence of Θ(n−1) by letting

Θ(n−1)(a|x)w,v = Γ̃
(n)
w,Aa|x·v

for all w, v monomials in Bn−1, and note that the weak completeness is already sufficient to “fake”
the strongly no-signaling condition.

For the converse direction, suppose we have Θ(n), one may identify this with a compiled Bell
game with strongly no-signaling condition via

σn
a|x(w

∗v) := Θ(n)(a|x)w,v ∀a, x

σn
x(w

∗v) = σn(w∗v) := Θ(n)
w,v ∀x

(24)

as positive linear maps B2n → C. We then use the same flat extension technique as in Section 2.2
and 2.3 to obtain positive functionals σa|x : B → C with σx =

∑
a σa|x. As extensions, the linear

functionals σa|x agree with σn
a|x on the subspace B2n−2, so the states σx agree with σn on B2n−2. A

crucial observation is that σx ̸= σx′ in general, in contrast to their behaviors in B2n−2.
Then, using Theorem 2.5 for {σx}x we have:

1. A GNS representation (Hn−1, πn−1, |Ωn−1⟩).

2. The operators {π(Bb|y)} form POVMs in B(Hn−1).

3. Positive operators Ân−1
a|x ∈ πn−1(B)′ ⊂ B(Hn−1) for all a, x such that

Θ(n)(a|x)w,v = ⟨Ωn−1|Ân−1
a|x πn−1(w

∗v)|Ωn−1⟩

for w, v ∈ Bn−1. Note that, however, the equation does not hold when w, v ∈ Bn \ Bn−1

because the flat extension technique affects these entries.

4. The operators Â
(n−1)
a|x behave like POVMs for low-degree polynomials of Bob’s measurements,

i.e., for any P1, P2 ∈ Bn−1, one has

⟨Ωn−1|πn−1(P1)(
∑
a

Â
(n−1)
a|x − 1Hn−1)πn−1(P2)|Ωn−1⟩ = 0.

But the above equation does not hold for P1, P2 of higher degrees, due to the extensions
σx ̸= σx′ for higher degree polynomials.

One can then identify the letter Aa|x with Â
(n−1)
a|x and Bb|y with πn−1(Bb|y), and check that the

formula

Γ̃(n−1)
w,v = ⟨Ωn−1|w∗v|Ωn−1⟩

defines a modified moment matrix Γ̃n−1.

3.2 Stopping criterion for the sequential NPA hierarchy

We now discuss the stopping criterion for the sequential NPA hierarchy. First introduced in Eq. (7),
we define more precisely the flatness condition for the sequential NPA hierarchy and then show its
consequences in relation to the finite-dimensional quantum realizations.
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Definition 3.3. Let {Θ(n)(a|x)} be the solution of the sequential NPA hierarchy at level n from
Eq. (21) for a Bell game G. Denote Θ(n) =

∑
aΘ

(n)(a|x) and consider its block form

Θ(n) =

(
Θ(n−1) B
B∗ C

)
,

where Θ(n−1) is the block indexed by monomials of degree ≤ n− 1, and C is the block indexed by
monomials of degree exactly n. Then we say the solution {Θ(n)(a|x)} is flat (or has a rank-loop) if

rank(Θ(n)) = rank(Θ(n−1)) < ∞.

This leads to our second main theorem.

Theorem 3.4. Let G be a bipartite Bell game with optimal quantum score ωqc(G) = ωq(G). Its
optimal score ωq(G) can be achieved with some finite-dimensional quantum strategy if and only if
there exists a flat optimal solution at some finite level n of the sequential NPA hierarchy.

Furthermore, when these conditions hold, the flat solution {Θ(n)(a|x)} at level n yields a finite-
dimensional GNS representation (H, π, |Ω⟩) of B with an optimal quantum strategy (Âa|x, π(Bb|y), |Ω⟩),
which is equivalent to an optimal finite-dimensional tensor product quantum strategy and satisfies:

(i) There exist POVMs {Âa|x}a,x ⊂ π(B)′ ⊂ B(H), where π(B)′ is the commutant of π(B).

(ii) Bob’s measurements in this representation, {π(Bb|y)}b,y, are POVMs.

(iii) The probability distribution p(ab|xy) = Θ(n)(a|x)1,Bb|y from Eq. (21) is recovered by Born’s
rule in this representation, i.e.,

p(ab|xy) = ⟨Ω|Âa|xπ(Bb|y)|Ω⟩.

(iv) The score of the solution {Θ(n)(a|x)} coincides with the tensor product quantum score, i.e.,

ωn
seqNPA(G) = ωqc(G) = ωq(G).

Proof. The implication that the finite-dimensional optimal quantum strategy leads to a flat solution
of the sequential NPA hierarchy at some level n can be proven with the standard rank vs. the
dimension of the optimal strategy argument, see the proof of [NPA08, Theorem 10].

For the converse direction, using Eq. (24) we identify the moment matrix Θ(n) with a positive
linear functional σn : B2n → C and each Θ(n)(a|x) with a σn

a|x : B2n → C.

First, we show that every Θ(n)(a|x) is also flat. Since Θ(n) is flat, its corresponding functional
σn can be extended to a state σ on B via a finite-dimensional GNS representation (H, π, |Ω⟩)
(Theorem 2.3). The flatness condition means:

H = span{π(P ) |Ω⟩ | P ∈ Bn} = span{π(P ) |Ω⟩ | P ∈ Bn−1}.

This equality implies that for every monomial w ∈ Bn \ Bn−1, we have a linear dependence

π(w) |Ω⟩ =
∑

v∈Bn−1

cvπ(v) |Ω⟩
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for some constants cv ∈ C. It follows that for the polynomial Pw = w −
∑

v∈Bn−1
cvv ∈ Bn,

0 = ∥π(Pw) |Ω⟩∥2 = σ(P ∗
wPw) = σn(P ∗

wPw) =
∑
a

σn
a|x(P

∗
wPw)

for all x. Hence σn
a|x(P

∗
wPw) = 0 for all a, x by positivity. Moreover, the Cauchy-Schwarz inequality

implies that

σ(Pw) = σn(Pw) = σn
a|x(Pw) = σa|x(Pw) = 0.

But the condition σn
a|x(P

∗
wPw) = 0 for the same polynomials Pw means that the Gram vectors

corresponding to monomials in Bn \ Bn−1 for each Θ(n)(a|x) satisfy the same linear dependence
relations on Gram vectors from Bn−1. That is, all Θ

(n)(a|x) are flat in the same block form.
Next, we construct Alice’s operators. Denote by σa|x : B → C the flat extension of σn

a|x in the

sense of Section 2.2. Following standard arguments (Section 2.3 and Theorem 3.2), we can construct
positive operators Âa|x ∈ π(B)′ ⊂ B(H) such that for any Q ∈ B and w, v ∈ Bn:

σa|x(Q) = ⟨Ω|Âa|xπ(Q)|Ω⟩ and Θ(n)(a|x)w,v = ⟨Ω|Âa|xπ(w
∗v)|Ω⟩.

(This equality holds for w, v ∈ Bn, as opposed to Bn−1 in the proof of Theorem 3.2, precisely because
Θ(n)(a|x) have been shown to be flat.) Statements (ii) and (iii) then straightforwardly follow.

To show that {Âa|x} are actually POVMs for each x, it suffices to show that the state σx :=∑
a σa|x is equal to σ for all x. (We refer to the proofs of Theorems 2.5 and 3.2 for this equivalence.)

To this end, it is useful to recall what flat extension from σn to σ does exactly: consider the set
of null polynomials Pw = w −

∑
v∈Bn−1

cvv for w ∈ Bn \ Bn−1, generating a two-sided ideal J for

which σ(J) = 0. Then, for any Q ∈ B, there exists a low-degree representative Q′ ∈ B2n−2 such that
Q−Q′ ∈ J . The flat extension is then constructed via the equation σ(Q) = σ(Q′) = σn(Q′). (For
example, Q = w,Q′ =

∑
v∈Bn−1

cvv with Pw = Q−Q′.)
On the other hand, each σa|x is extended from σn

a|x using another two-sided ideal Ja|x. We have

already shown that σn
a|x(P

∗
wPw) = 0, hence all Pw ∈ Ja|x and J ⊂ Ja|x for all a, x. Consequently, if

Q−Q′ ∈ J , then Q−Q′ ∈
⋂

a Ja|x, which implies that

σx(Q) =
∑
a

σa|x(Q) =
∑
a

σa|x(Q
′) =

∑
a

σn
a|x(Q

′) = σn(Q′) = σ(Q′) = σ(Q).

It follows that σx = σ for all x since Q ∈ B was arbitrary.
We have now shown that (Âa|x, π(Bb|y), |Ω⟩) is a finite-dimensional quantum strategy with

commuting observables achieving the Bell score ωn
seqNPA(G). By definition of the sequential NPA

hierarchy as a relaxation, ωn
seqNPA(G) ≥ ωqc(G). Conversely, ωqc(G) is the optimal value over

quantum commuting observable strategies, so ωn
seqNPA(G) ≤ ωqc(G). This proves statement (iv).

The equivalence to a tensor product quantum strategy then follows from Tsirelson’s theorem for
finite-dimensional commuting strategies (see, e.g., [SW08; XRK25]).

This means that once a flat solution is found, then we can stop the hierarchy with a certified
optimal score. Conversely, note that the sufficiency direction of Theorem 3.4 is only an existence
statement: having an optimal finite-dimensional strategy does not guarantee the sequential NPA
hierarchy will find a flat optimal solution in practice. In fact, it is possible that there exist infinitely
many inequivalent finite-dimensional optimizers, leading the SDP solver for the sequential NPA
hierarchy to freely return any convex mixtures of them. We further remark that the decision
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problem of whether a correlation admits a finite-dimensional quantum realization is undecidable in
general [FMS25].

Remark 3.5. A feature of the sequential NPA hierarchy Eq. (21) is that all constraints are of
degree one, thus it suffices to check flatness over the block Θ(n−1). If adding higher order polynomial
constraints Q({Bb|y}) of deg(Q) = d to Eq. (21), the result of Theorem 3.4 will remain valid if we

change the flatness condition to rank(Θ(n)) = rank(Θ(n−d)), where Θ(n−d) is the block indexed by
monomials of degree ≤ n− d.

3.3 Sequential NPA hierarchy is conic dual to sparse SOS hierarchy

Another natural question is to ask what the dual of the sequential NPA hierarchy is, i.e., what is
the corresponding sum of squares (SOS) certificate. It turns out that its conic dual is a special case
of the sparse SOS optimization introduced by [KMP22], which is asymptotically equivalent to the
standard SOS hierarchy (and hence, conic dual to the standard NPA hierarchy). This conic duality
correspondence provides further characterization of the sequential NPA hierarchy and insights into
its numerical performance from the sparse SOS numerical examples [MW23, Chapter 6.7].

In order to formulate the conic dual of the sequential NPA hierarchy at level n, we first restrict our
attention to the polynomial space generated by the measurement operators Aa|x, Bb|y. Specifically,
note that the sequential NPA hierarchy at level n characterizes polynomials that are at most of
degree 2n in Bb|y and only linear in Aa|x (via the matrices Θ(n)(a|x)). Thus, the natural polynomial
vector space is

V(n) = {
∑
a,x

Aa|xfa|x(Bb|y) + g(Bb|y) | fa|x, g ∈ B2n}.

For the duality proof we now assume without loss of generality that the measurement operators
are projective, i.e., A2

a|x = Aa|x, B
2
b|y = Bb|y. While this appears stronger than the original POVM

conditions, Theorem 3.6 below (or, equivalently, by invoking Naimark dilation) guarantees that this
assumption is equivalent for our purposes. In this polynomial space V(n), the sparse SOS cone at
level n is then defined as

M(n) =

{∑
i

(∑
a,x

Aa|xfa|x,i + gi

)∗(∑
a,x

Aa|xfa|x,i + gi

)
+
∑
x

p∗x

(
1−

∑
a

Aa|x

)
qx

∣∣∣∣ fa|x,i, gi, px, qx ∈ Bn

}
.

If the Bell polynomial β can be identified with an element in V(n), then the sparse SOS hierarchy
at level n, yielding a score ωn

sparse(G), is given by:

ωn
sparse(G) = max

m, s, {λabxy}
m

s.t. β −m1 = s+
∑

a,b,x,y

λabxy

(
Aa|xBb|y − p(ab|xy)

)
,

s ∈ M(n).

(25)

We now show that this hierarchy is indeed the conic dual of the sequential NPA hierarchy.
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Proposition 3.6. The sequential NPA hierarchy Eq. (21) and the sparse SOS hierarchy Eq. (25)
are conically dual.

Proof. Define the dual cone of M(n) as M∨
(n) = {L : V(n) → C linear functional | L(M(n)) ≥ 0}.

We shall show that every dual feasible solution for the sparse SOS hierarchy corresponds to a feasible
moment solution for the sequential NPA hierarchy, and vice versa.

For the easier direction (SOS =⇒ moment), if L ∈ M∨
(n), then by definition for every SOS

f ∈ M(n) we have L(f) ≥ 0. We can identify the entries of the moment matrices, analogous to
Eq. (6), by

Θ(n)(a|x)w,v = L(w∗Aa|xv) (26)

and check that they satisfy Eq. (21).
For the converse (moment =⇒ SOS), suppose {Θ(n)(a|x)} is a solution of Eq. (21). Then for

each a, x, define linear functionals La|x from Θ(n)(a|x) again with Eq. (26), and, using the strongly

no-signaling condition, define L =
∑

a La|x. Then the positive semidefiniteness of each Θ(n)(a|x)
implies that for any f polynomial in Bb|y with degree ≤ n,

La|x(f
∗f), L(f∗f) ≥ 0.

Moreover, under the projective assumption, one can directly compute that for any f, g polynomials
in Bb|y of degree ≤ n, that

L((Aa|xf + g)∗(Aa|xf + g)) = L(Aa|xf
∗f +Aa|xf

∗g +Aa|xg
∗f + g∗g)

= La|x(f
∗f + f∗g + g∗f) + L(g∗g)

= La|x((f + g)∗(f + g))− La|x(g
∗g) + L(g∗g)

= La|x((f + g)∗(f + g)) +
∑
a′ ̸=a

La′|x(g
∗g) ≥ 0,

It follows that L is nonnegative on the entire M(n); that is, L ∈ M∨
(n).

Remark 3.7. There is an equivalent formulation of Eq. (25) such that, while the formulation of the
SDP problem becomes more complicated, the connection to [KMP22] is clearer. Instead, consider a
different sparse SOS cone

M(n) = {
∑
i

(
∑
a,x

Aa|xfa|x,i + gi)
∗(
∑
a,x

Aa|xfa|x,i + gi) | fa|x,i, gi ∈ Bn}.

We then compensate the smaller sparse SOS cone with more Lagrange multipliers λuxvx for every
pair of monomials ux, vx in Bb|y:

ωn
sparse(G) = max

m, s, {λabxy},λuxvx

m

s.t. β −m1 = s+
∑

a,b,x,y

λabxy

(
Aa|xBb|y − p(ab|xy)

)

+
∑
x

∑
ux,vx

u∗x

(
1−

∑
a

Aa|x

)
vx,

s ∈ M(n), where ux, vx run through all monomials in Bn.

(27)
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This alternative formulation satisfies the running intersection property in [KMP22] and hence belongs
to a special case of the sparse SOS optimization. Then, it is shown [KMP22] that, asymptotically as
n → ∞, this formulation converges to the standard SOS hierarchy, which is dual to the standard
NPA hierarchy. At finite levels, however, there is generally no degree guarantee as the sparse SOS
certificate generally requires a higher degree than the dense (i.e., usual) SOS hierarchy (analogous to
Theorem 3.2). The numerical analysis of sparse SOS hierarchy vs. dense SOS hierarchy [MW23,
Chapter 6.7] provides insight into the potential numerical performance of the sequential NPA hierarchy
vs. the standard one due to Theorem 3.6.

4 On the necessity of the NPA hierarchy for quantitative quantum
soundness

For bipartite Bell games with finite-dimensional optimal quantum strategies, our Theorem 2.9
confirms the quantitative quantum soundness of its compiled version. However, deciding whether a
correlation admits a finite-dimensional quantum realization is undecidable [FMS25]. It is then of
interest to understand if our Theorem 2.9 can be strengthened to get rid of the finite-dimensionality
assumption.

In particular, Theorem 2.8 establishes that ωλ(Gcomp, S) ≤ ωqc(G) + ε(n) + ηS,n(λ) for Bell
games with possibly only infinite-dimensional optimal strategies (e.g., in Cqc \ Cq or Cqa \ Cq).
The bound’s tightness depends on two components: a game-specific function ε(n) which quantifies
the approximation error of the sequential NPA hierarchy, and an NPA-level-dependent negligible
function ηS,n(λ) derived from the cryptographic security. Having dedicated the previous section to
a full characterization of this sequential NPA hierarchy, a natural question arises: for Bell games
with no finite-dimensional optimal quantum strategy, is the dependence on a game-specific NPA
approximation error ε(n), and consequently the NPA-level-dependent negligible function ηS,n(λ),
fundamentally necessary? Or, could it be possible to prove a more universal statement of the form
ωλ(Gcomp, S) ≤ ωqc(G) + ηu(λ), where ηu(λ) is some negligible function that is universal for all
games G?

This section explores arguments suggesting that game-specific NPA convergence information
ε(n) and ηS,n(λ) may be essential for quantitatively upper-bounding quantum scores for compiled
Bell games based on Theorem 4.2.

We first show in Section 4.1 how, for any game G and NPA level n, one can construct explicit
almost-commuting quantum strategies and weakly signaling sequential strategies achieving the score

ω
(n)
NPA(G). Then, in Section 4.2, we use the hardness conjecture MIPco = coRE (Theorem 4.2) to

argue for the existence of a family of games G(n) where ωn
NPA(G) is substantially larger than ωqc(G(n)),

leading to the existence of high-scoring strategies S(n), S̃(n), S
(n)
seq , S̃

(n)
seq (up to error O(1/n1/4) for

S
(n)
seq ). Based on the family G(n), we then consider a compiled Bell game Gcomp = (G(n(λ))

comp )λ for some
function n = n(λ), where for each λ the verifier and the prover play the game G(n(λ)). We argue the
quantum soundness bounds for this Gcomp may not be quantitative. We then discuss the significant

challenges in compiling these high-scoring strategies to a QPT strategy (S
(λ)
comp) for the family of

compiled games G(n(λ))
comp . Overcoming these challenges would prove the claim about the necessity of

NPA approximation errors.
In addition, the line of reasoning in this section is essentially an inversion of Section 2. While

Section 2 first bounded the compiled score by the sequential NPA hierarchy score (effectively
analyzing the robustness of “uncompiling”) and then assumed its rate of convergence to ωqc(G),
here we first identify games with NPA hierarchy converging arbitrarily slowly and then explore the
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challenges of compiling the corresponding strategies in a score-preserving way.

4.1 Almost commuting and weakly signaling sequential strategies from NPA
hierarchies

Given a Bell game G and a solution to its n-th level NPA hierarchy, we can construct explicit
quantum strategies that achieve the NPA value ωn

NPA(G). These strategies might not satisfy perfect
commutation relations (for standard Bell games) or strong no-signaling (for sequential games), but
their deviations are controlled.

In the proposition below, we propose two constructions. The first, based on [CV15], gives

strategies S(n) and S
(n)
seq with almost commutativity controlled by the operator norm. The second

construction is based on the flat extension technique that was already discussed in Section 2.2, leading

to strategies S̃(n) and S̃
(n)
seq with almost commutativity controlled in the low-degree polynomial

subspace.

Proposition 4.1. Let G be a Bell game, Gseq be its sequential version, and n ∈ N. Suppose ωn
NPA(G)

is the optimal value of the n-th level of the standard NPA hierarchy for G. Then:

(i) There exists an explicit quantum strategy S(n) = (σ, {Aa|x}, {Bb|y}) for G, on a Hilbert space

H of dimension d (potentially exp(O(n))), achieving score ω(G, S(n)) = ωn
NPA(G) such that

∥[Aa|x, Bb|y]∥op ≤ δ = O(
1√
n
).

That is, S(n) is an almost commuting finite-dimensional quantum strategy, with commutativity
improving in operator norm as n increases.

(ii) There exists an explicit sequential quantum strategy S
(n)
seq = (σa|x, {Bb|y}) for Gseq, on a Hilbert

space H of dimension d (potentially exp(O(n))), achieving score

ω(Gseq, S
(n)
seq ) ∈ [ωn

NPA(G)−O(
1

n1/4
), ωn

NPA(G) +O(
1

n1/4
)].

It satisfies the weak signaling condition:

|Tr

(
(
∑
a

σa|x − σ)P (Bb|y)

)
| ≤ const(P,G) ·

√
δ = O(

const(P,G)
n1/4

),

for any polynomial P (Bb|y) in Bob’s operators and const(P,G) a constant depending on P
and the game G.

(iii) There exists an explicit quantum strategy S̃(n) = (σ̃, {Ãa|x}, {B̃b|y}) for G, on a Hilbert space

H̃ of dimension d̃ (potentially exp(O(n))), achieving score ω(S̃(n)) = ωn
NPA(G) such that

Tr
(
σ̃[Ãa|x, B̃b|y]P ({Ãa|x}, {B̃b|y})

)
= 0,

where P is any polynomial in Ãa|x, B̃b|y for which deg([Ãa|x, B̃b|y]P ) ≤ 2n. That is, S̃(n) is a
finite-dimensional strategy whose operators appear to commute when tested against polynomials
up to a certain degree, a property enforced by the n-th level NPA constraints.
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(iv) There exists an explicit sequential quantum strategy S̃
(n)
seq = (σ̃a|x, {B̃b|y}) for Gseq, on a Hilbert

space H̃ of dimension d̃ (potentially exp(O(n))), achieving score ω(Gseq, S̃
(n)
seq ) = ωn

NPA(G). It
satisfies the weak signaling condition:

Tr

(
(
∑
a

σ̃a|x − σ̃)P (B̃b|y)

)
= 0,

for any polynomial P (B̃b|y) such that deg(P ) ≤ 2n− 2.

Proof. Statement (i) is due to [CV15, Theorem 2]. For statement (ii), one can construct a sequential

strategy S
(n)
seq for Gseq from S(n). From POVMs Aa|x and state σ of the strategy S(n), consider

its square root A
1/2
a|x inducing a post-measured state σa|x = A

1/2
a|xσA

1/2
a|x . This defines the strategy

S
(n)
seq with the corresponding correlation is p′(ab|xy) = Tr

(
σa|xBb|y

)
= Tr

(
A

1/2
a|xσA

1/2
a|xBb|y

)
and score

ω(Gseq, S
(n)
seq ).

By [OP89, Lemma 2.1] and the commutator bound from statement (i), we have∥∥∥[A1/2
a|x , Bb|y]

∥∥∥
op

≤ (2
∥∥Aa|x, Bb|y

∥∥)1/2op =
√
2δ = O(

1

n1/4
).

There are two consequences. First, one calculates with trace cyclicity and Hölder’s inequality for
Schatten norms that∣∣p(ab|xy)− p′(ab|xy)

∣∣ = ∣∣∣Tr(σA1/2
a|x ·A1/2

a|xBb|y

)
− Tr

(
σA

1/2
a|x ·Bb|yA

1/2
a|x

)∣∣∣
≤
∥∥∥σA1/2

a|x

∥∥∥
1

∥∥∥[A1/2
a|x , Bb|y]

∥∥∥
op

≤
∥∥∥[A1/2

a|x , Bb|y]
∥∥∥
op

≤ O(
1

n1/4
),

subsequently the Bell score satisfies∣∣∣ω(Gseq, S
(n)
seq )− ωn

NPA(G)
∣∣∣ ≤ O(

1

n1/4
).

Second, for any polynomial P (Bb|y) in Bob’s operators, with again trace cyclicity and Hölder’s
inequality for Schatten norms, we have∣∣∣∣∣Tr

(
(σ −

∑
a

σa|x)P (Bb|y)

)∣∣∣∣∣ =
∣∣∣∣∣∑

a

Tr
(
σA

1/2
a|x · [A1/2

a|x , P (Bb|y)]
)∣∣∣∣∣

≤
∑
a

∥∥∥σA1/2
a|x

∥∥∥
1

∥∥∥[A1/2
a|x , P (Bb|y)]

∥∥∥
op

≤ |IA| · (max of coefficients of P ) · deg(P ) · (# of terms of P ) ·
√
δ

≤ |IA| · (max of coefficients of P ) · deg(P ) ·
deg(P )∑

k

(|IB| |IY |)k︸ ︷︷ ︸
const(P,G)

·
√
δ

≤ O(
const(P,G)

n1/4
).

For statement (iii), denote by Γn the moment matrix associated with ωn
NPA(G). The GNS
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representation of the flat extension of Γn gives rise to the desired quantum strategy S̃(n). We omit
the details since this is similar to Section 2.2.

For statement (iv), the construction for S̃
(n)
seq from S̃(n) is analogous with the square root

operator Ã
1/2
a|x and σa|x = Ã

1/2
a|xσÃ

1/2
a|x . Since [Ãa|x, P (B̃b|y)] = 0 for any P (B̃b|y) of degree ≤ 2n− 1,

direct calculation shows that [Q(Ãa|x), P (B̃b|y)] = 0 for any polynomial Q in Ãa|x. It follows that

[Ã
1/2
a|x , P (B̃b|y)] = 0 since Ã

1/2
a|x lies in the C∗-algebra generated by Ãa|x.

Hence, the score of S̃
(n)
seq agrees with ωn

NPA(G) because, by cyclicity and low degree commutativity,
that

Tr
(
A

1/2
a|xσA

1/2
a|xBb|y

)
= Tr

(
σAa|xBb|y

)
.

Finally, the same reason implies

Tr

(
(
∑
a

σ′
a|x − σ)P (B̃b|y)

)
=
∑
a

Tr
(
Ãa|xσ[Ãa|x, P (B̃b|y)]

)
= 0,

for any P (B̃b|y) such that deg([Ãa|x, P (B̃b|y)]Ãa|x) ≤ 2n.

4.2 The challenge of compiling high-scoring strategies for games with slow NPA
convergence

The strategies from Theorem 4.1 achieve the n-th level NPA score. If we can find games where this
NPA score is significantly higher than the true quantum commuting score ωqc(G), these strategies
become candidates for “cheating” strategies that outperform any legitimate commuting quantum
strategy. To argue for the existence of such games, we rely on a standard hardness conjecture from
quantum complexity theory.

Conjecture 4.2. MIPco = coRE (see e.g., [Ji+21]). More precisely, we conjecture that the following
decision problem is coRE-hard:

Given a game G with promise that ωqc(G) = 1 or ωqc(G) ≤ 1/4, decide which case holds. (28)

This conjecture implies the existence of games where finite levels of the NPA hierarchy significantly
overestimate the true quantum score.

Proposition 4.3. Assume Theorem 4.2. Then for any integer n ∈ N, there exists a Bell game G(n)

such that its true optimal quantum commuting score satisfies ωqc(G(n)) ≤ 1/4, while the n-th level
of the standard NPA hierarchy gives a bound ωn

NPA(G(n)) ≥ 3/4. Consequently, there cannot be a
universal computable rate of convergence ε(k) → 0 for the NPA hierarchy that holds for all games G
and all levels k.

Proof. We prove by contradiction. Assume the negation: there exists some n0 such that for all Bell
games G, if ωn0

NPA(G) ≥ 3/4, then ωqc(G) > 1/4.
Now, consider an arbitrary instance G of the decision problem Eq. (28). Then, due to G fulfilling

the promise of Eq. (28) and the negation of statement (i), we have the following algorithm for
Eq. (28):

1. Compute ωn0
NPA(G) using NPA hierarchy at level n0.

2. If ωn0
NPA(G) ≥ 3/4, then ωqc(G) = 1.
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3. Otherwise, one has ωqc(G) ≤ ωn0
NPA(G) < 3/4, which forces that ωqc(G) ≤ 1/4.

This algorithm decides the problem in Eq. (28), which contradicts its coRE-hardness. Thus, the
sequence of games (G(n))n∈N must exist. Since the gap between ωn

NPA(G(n)) and ωqc(G(n)) is ≥ 1/2,
any computable NPA approximation error ε(k) → 0 would violate the gap once k = n is chosen so
that ε(n) < 1/2.

Therefore, in the case of Theorem 4.2 being false, then our result Theorem 2.9 fully characterizes
the quantitative quantum soundness for all Bell games. Otherwise, Theorem 4.3 establishes
the existence of a family of Bell games (G(n))n∈N such that for each n, ωqc(G(n)) ≤ 1/4 while
ωn
NPA(G(n)) ≥ 3/4. For each such game G(n), Theorem 4.1 provides (uncompiled) strategies, such as

S(n) or S̃(n) (and their sequential counterparts S
(n)
seq , S̃

(n)
seq), that achieve this high score ωn

NPA(G(n))

(up to error of O(1/n1/4) for S
(n)
seq ).

The central challenge is to compile these high-scoring strategies into a QPT cheating strategy.
This involves defining a relationship n = n(λ) (where λ is the security parameter) for which we

construct a compiled Bell game Gcomp = (G(n(λ))
comp )λ. That is, for every λ the verifier and the prover

play the compiled version of the game G(n(λ)). Additionally, one needs to compile the high-scoring

strategy S(n(λ)) (or S̃(n(λ))) for the game G(n(λ)) into a QPT strategy S
(λ)
comp for the compiled game

G(n(λ))
comp . The goal is for S

(λ)
comp to be implementable in polynomial time in λ and to achieve a score

ωλ(G
(n(λ))
comp , S

(λ)
comp) that remains significantly above ωqc(G(n(λ))) (ideally, close to 3/4). If such a QPT

strategy S
(λ)
comp can be constructed, it would indeed show that without game-specific knowledge of

the NPA approximation error ε(n(λ)), the verifier’s soundness guarantee (Theorem 2.9) would be

loose for the Bell game Gcomp = (G(n(λ))
comp )λ.

However, there are several significant obstacles to such a compilation:

1. Signaling properties and QHE compatibility: The sequential strategies S
(n)
seq and S̃

(n)
seq ex-

hibit signaling whose nature depends on n = n(λ). For S
(n)
seq , the signaling is bounded by

O(const(P,G)/n(λ)1/4) (Theorem 4.1(ii)). For n(λ) that is not supra-polynomial, this is
non-negligible in λ and seems to be in conflict with the QHE security assumptions (Eq. (4)).

Similarly, for S̃
(n)
seq , zero signaling is guaranteed only for polynomials P of degree up to 2n− 2

(Theorem 4.1(iv) and its proof). This is weaker than requiring negligible signaling against
polynomials of arbitrary degrees or at least polynomially large degree in the case of n(λ) being
sub-polynomial. These potentially large signaling properties present a direct challenge for
compiling these strategies using existing QHE frameworks, especially under the requirement
of efficient provers as discussed in the next item.

2. Efficiency of the base strategies: The strategies S(n) and S̃(n) from Theorem 4.1 are constructed
on Hilbert spaces H, H̃ whose dimensions d, d̃ can be exp(O(n)) in the worst case (see
Theorem 2.11). On the other hand, the Solovay-Kitaev theorem [DN06, Eq. (23)] implies any
quantum operations acting on H, H̃ can be (up to an arbitrarily small error) approximated by

O(poly(d)) gates. This means that for S
(λ)
comp to form a QPT strategy, its circuit complexity

must be polynomial in λ. If the underlying strategy S(n) and S̃(n) has a dimension exponential
in n, the Solovay-Kitaev theorem implies that n must be at most O(log(λ)) for the compiled
strategy to remain efficient. This potential constraint of n = O(log(λ)) could, in turn, make
the signaling effects (which scale with n) non-negligible in λ, presenting a significant hurdle
for compiling these strategies. However, it is an open possibility that for specific families of
games G(n) (e.g., those with more structure), or through alternative strategy constructions,
efficient QPT implementations might be found even for n = poly(λ).
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3. QHE correctness for almost commuting strategies: Standard proofs of QHE correctness for
compiled games (e.g., KLVY [Kal+23]) rely on an assumption of “correctness with auxiliary
input.” This assumption states that QHE evaluation on a register A preserves its entanglement
with an auxiliary register B. This is well-suited for perfectly commuting strategies, which, by
Tsirelson’s theorem, admit a tensor product model HA ⊗HB. However, our strategies S

(n)

and S̃(n) are inherently almost-commuting on a single Hilbert space H (or H̃). In fact, one
cannot still hope to rely on the original assumption via approximating these strategies by
perfectly commuting strategies using quantitative Tsirelson’s theorems [XRK25]. Indeed, they
are necessarily “far” from any perfectly commuting (tensor product) strategy that achieves a
similar high score, as such a strategy would be bounded by ωqc(G(n)) ≤ 1/4.

Thus, the standard QHE correctness assumption is not directly applicable and one would
need to formalize and justify a new assumption, perhaps “correctness with auxiliary input
for weakly commuting registers.” This new assumption would need to ensure that QHE
applied to Alice’s (compiled) operations does not unacceptably interfere with Bob’s subsequent
(compiled) operations, despite the lack of perfect commutation or strong no-signaling, while
ensuring the compiled strategy remains efficient.

4. Scaling of game parameters: The games G(n) whose existence is implied by Theorem 4.3 might
have descriptions (e.g., number of questions or answers) that scale with n. For the overall

protocol of the Bell game Gcomp = (G(n(λ))
comp )λ to be efficient with respect to λ, the description

of G(n) itself must also scale with poly(λ). If the complexity of defining G(n) grows too rapidly
with n (consequently with λ), this could render the compiled game impractical for a QPT
verifier, even if the prover’s strategy for that specific game instance could be implemented
efficiently. This aspect depends on the concrete realization of games G(n) stemming from
potential proof of MIPco = coRE how n is related to λ.

Addressing these obstacles is a significant research challenge. Whether these (or related) high-

scoring, almost-commuting strategies can be successfully compiled into QPT strategies S
(λ)
comp for a

family of games like (G(n(λ)))λ while preserving their score advantage remains an important open
question. A positive resolution would provide strong evidence for the necessity of game-specific
NPA approximation errors ε(n) in quantitative soundness statements for compiled Bell games.
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